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Abstract—5G system aims to enable vertical industries 

utilizing network programmability to its full extension. 3rd 

Generation Partnership Project (3GPP) has already established 

the foundations to provide 5G Core’s capabilities to third 

parties with Common API Framework (CAPIF) and Service 

Enabler Layer Architecture (SEAL). Vertical application 

developers communicate implicitly, through the Network 

Exposure Function (NEF), to unlock the available services. As 

more third parties move towards 5G ecosystem, their vertical 

applications need to be scalable, robust and more secure. Cloud 

native approach is the key enabler to fulfill those requirements 

and empower the inherent cloud-native characteristics of the 

5GC. This paper investigates how the 5G architecture will 

support Vertical Application Enablers (VAEs) currently 

studied in 3GPP Rel.17, and proposes cloud native alternatives 

regarding VAEs implementation. 
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I. INTRODUCTION 

The telecom industry was upended in 2007 with the 

introduction of a new smartphone platform that was 

welcomed by customers and developers alike, following 

previous attempts to open cellphone handsets to third parties. 

Third-party developers were given easy-to-use, 

programmable Software Development Kits (SDKs) and 

Application Programming Interfaces (APIs) to create new 

applications for the smartphone, while unit sales soared 

thanks to effective marketing and praised user experience. 

The app-store for these applications launched the following 

year, and other smartphone manufacturers quickly followed, 

inviting programmers to create and innovate on their 

platforms as well. Superior user interface, faster data rates, 

and a business model that allowed programmers to reach 

potentially millions of customers, propelled the mobile app 

ecosystem to multi-billion-dollar status and accelerated the 

mobile operating system's openness.  

5G promises even more disruption in app 

programmability, combining the untapped capacity of 

multiple simultaneous network features and promising a new 

generation of applications that deliver an unprecedented user 

experience. The business potential with 5G openness is high, 

considering that opening the OS of a mobile phone to external 

developers impacted the mobile market, then the potential by 

opening up a whole mobile network is enormous and is 

expected to disrupt the vertical industries.  

5G Core (5GC) network is realizing this opportunity by 

securely exposing standard APIs. External third parties with 

permission, such as industries, platform developers, and 

designers, may use those standard APIs for building network-

aware (5G-enabled) applications, which establish a bi-

directional communication with the 5GC, retrieving network 

statistics, but also triggering specific policies and commands 

to the network.  

The above-mentioned exposure capability is materialised 

through the Service Based Architecture (SBA), adopted by 

the 5GC network. Indeed, the 5GC control plane Network 

Functions (NFs) communicate through API-calls that define 

the related Service Based Interfaces (SBIs). 

In this context, the Network Repository Function (NRF) 

allows other NFs to register their services, which can then be 

discovered by other NFs. This allows for a versatile 

implementation, in which each NF allows other approved NFs 

to access resources. In addition, the Network Exposure 

Function (NEF), provides a set of northbound APIs for 

exposing network data and receiving management 

commands. More precisely, NEF provides adaptors for 

connecting the southbound interfaces with the SBA to an 

exposure layer with northbound interfaces offered to third-

party developers. In this way, NEF facilitates the safe 

disclosure of network resources to third parties, such as 

network slicing, edge computing, and machine learning, 

allowing for the monetization of network assets and business 

innovation. The functionality provided by NRF and NEF to 

third parties, enables programmability and adaptability of the 

5G connectivity services, and creates a new ecosystem where 

third parties’ developments bridge 5G exposed capabilities 

and service requirements/potentials from the vertical 

industries. 

In this framework, 3rd Generation Partnership Project 

(3GPP) introduced the concept of Vertical Application 

Enablers (VAEs) in Rel. 16, enabling the efficient use and 

deployment of vertical apps over 3GPP systems. The 

specifications and the architecture are based on the notion of 

the VAE layer that interfaces with one or more Vertical apps. 

VAEs communicate via network-based interfaces that are 

well-defined and version-controlled. The focus of VAEs is to 

provide key capabilities, such as message distribution, service 

continuity, application resource management, dynamic group 

management and vertical app server APIs over the 5G system 

capabilities, as specified in [1].  

From the VAE implementation perspective, cloud-native 

deployment procedures in network programmability allow the 

5GC to deliver the benefits of cloud technology and be ultra-

robust, secure, and scalable. Decomposing applications into 

smaller, manageable parts as loosely coupled stateless 



services and stateful backing services is a basic concept of 

cloud-native implementation. This is typically achieved by 

the use of a microservice architecture, in which each part can 

be deployed, scaled, and upgraded independently. Thus, a 

rapid and low-cost implementation of new services can be 

achieved.  

The rest of the paper is organized as follows: Section II 

briefly presents the 5G architectural functions that support the 

VAEs. Section III presents the cloud-native architectural 

alternatives of the VAEs, while Section IV performs a 

qualitative comparison of them and proposes the most 

suitable approach. Finally, Section V presents the future work 

and concludes the paper.   

II. 5G ARCHITECTURE SUPPORTING VAES  

3GPP has already established the foundations to provide 

5GC Network capabilities to vertical industries. The key 

concepts that has emerged are the Common API Framework 

(CAPIF) and the Service Enabler Architecture Layer (SEAL) 

together with NEF, as explained below. 

A. CAPIF 

1) CAPIF Architecture 

CAPIF was introduced in 3GPP Rel. 15 [2], to enable a 

unified approach between 5GC’s northbound APIs 

framework and vertical apps. The key concept is the 

standardization and development of the common supporting 

capabilities (e.g., authentication, service discovery, charging 

policies) that are applicable to northbound APIs in order to 

facilitate the development of vertical apps. CAPIF consists of 

the CAPIF Core Function (CCF), API Invokers and API 

provider domain which comprises API Exposing Function 

(AEF), API Publishing Function, (APF) and API 

Management Function (AMF). The architectural model 

adapted from [3] is presented in Fig. 1 and the functional 

entities are briefly described as follows: 

• CCF, acts as an orchestrator that manages the interaction 

between service consumers (vertical apps) and service 

providers (e.g., NEF, SEAL). The main responsibilities of 

CCF are authentication of the API invoker, authorization 

of the API invoker to access the available service APIs, 

monitoring the service API invocations. 

• API Invoker, represents the vertical app which consumes 

the service APIs utilizing CAPIF. API Invoker provides to 

the CCF the required information for authentication, 

discovers and then invokes the available service APIs.  

• AEF, is responsible for the exposure of the service APIs. 

Assuming that API Invokers are authorized by the CCF, 

AEF validates the authorization and subsequently provides 

the direct communication entry points to the service APIs. 

AEF may also authorize API invokers and record the 

invocations in log files. 

• APF, is responsible for the publication of the service APIs 

to CCF in order to enable the discovery capability to the 

API Invokers. 

• AMF, supplies the API provider domain with 

administrative capabilities. Some of these capabilities 

include, auditing the service API invocation logs received 

from the CCF, on-boarding/off-boarding new API 

invokers and monitoring the status of the service APIs. 

 

 

Fig. 1. Simplified CAPIF Architecture 

3GPP considers two main architectural deployment 
models, centralized, when the CCF and API Provider domain 
functions are co-located, and distributed (Fig. 1), when CCF 
and API Provider domain functions are not co-located and 
they are interacting through CAPIF-3/4/5 interfaces. 
Therefore, multiple CCFs can be deployed in the same PLMN 
trust domain [3]. 

CAPIF is located within the PLMN operator network. 
Thus, there are two functional options for API Invokers; 
usually 3rd party applications, which have service agreement 
with PLMN operator, represent API invokers (i.e., API 
Invoker 1) but they may be co-located within the same PLMN 
trust domain (i.e., API Invoker 2). Whether third parties have 
business relationship with PLMN, they can provide their own 
service APIs to CCF through CAPIF-3e/4e/5e interfaces, but 
they need to act in accordance with the functionalities of API 
provider domain. In order to be compliant with the overall 
architecture (see Fig. 1), NEF and SEAL (i.e., SEAL server) 
support the CAPIF’s API provider domain capabilities, as 
specified in [4] and [5]. 

 
2) CAPIF Services 

The available CAPIF services and their respective APIs 

according to [3] are listed hereby. Services are divided into 

four categories, common, security, management and internal 

connectivity services: 

Common Services 

• Discover (CAPIF_Discover_Service_API): This service 

enables API Invokers to retrieve the available services that 

have been registered in CCF. 

• Publish/Unpublish/Update 

(CAPIF_Publish_Service_API): APF consumes this 

service to publish/unpublish a service API to the CCF. The 

publication includes details about the specific service API. 

APF can also update already published services. 

Retrieve (CAPIF_Publish_Service_API): APF requests from 

CCF information related with previous published services. 

When a publication occurs CAPIF registers all the related 

information in a repository (i.e., API registry). 

Management Services 

• Logging (CAPIF_Logging_API_Invocation): Upon 

invocations (i.e., from API Invokers), CCF may store 

valuable information such as API invoker’s ID, IP 



address, service API name etc. AEF utilizes this service to 

access the potential log files that have been stored in CCF. 

• Auditing (CAPIF_Auditing): This service can be used to 

control CAPIF interactions with API Invokers (e.g., 

invocation events, onboarding events, authentication), 

which are stored in CCF. AMF initiates a request to fetch 

the respective log files. 

• Charging: AEF can use this service to retrieve charging 

related information flows from the CCF. 

• Monitoring events (CAPIF_Monitoring): Monitoring 

event service is used by AMF in order to get notified 

whether an event occurs in the CCF. Some of the events 

are the availability of service APIs (e.g., active, inactive), 

changes in service APIs (e.g., after an update), service API 

invocations, API invoker status (e.g., onboarded, 

offboarded) and performance related events (e.g., load 

conditions). 

Security Services 

• Authentication (CAPIF_Security / AEF_Security_API): 

An API Invoker can be authenticated from the CCF or the 

AEF. The former service enables invoker to initiate a 

direct request to the CCF. Otherwise, AEF authenticates 

an invoker with assistance from CCF. The authentication 

occurs prior or upon an invocation. 

• Authorization (CAPIF_Security / AEF_Security_API): 

After authentication occurs, API Invokers initiate requests 

to retrieve service APIs. AEF checks whether the invoker 

is authorized to do so. If the AEF does not have the 

required information for authorization, AEF inquires 

CCF. Thus, AEF and CCF can invalidate invoker’s 

configured authorization at any moment. 

• Access control policy (CAPIF_Access_Control_Policy): 

This service enables AEF to obtain the configured policies 

to perform access control on the service API invocations. 

• Registration of provider domain: This service enables 

AMF to register the API provider domain functions to 

CCF in order to be authorized and use CAPIF’s 

functionalities 

• On/off boarding (CAPIF_API_invoker_management): 

This service enables API Invokers as recognized users of 

the CAPIF. Invokers initiate the on-boarding process by 

sending a request to the CCF. If the enrolment information 

provided is valid, CCF on boards invokers and creates a 

new profile, which is sent back upon the response. API 

Invokers can also cancel their on-board status. 

Internal connectivity 

• CCF interconnection (CAPIF_Discover_Service_API / 

CAPIF_Publish_Service_API): This service enables the 

interconnection between multiple CAPIF providers. Each 

CAPIF provider has a CCF which utilizes publish and 

discover services in order to interchange its APIs.   

• Topology hiding (CAPIF_Routing_Info): This service 

enables hiding the topology in the functional scenario 

where CAPIF includes PLMN trust domains, third party 

domains and API invokers access the service APIs from 

outside both the PLMN and third-party trust domains. In 

this case, API invokers access an AEF which acts as an 

entry point. Thus, the information for the entry AEF is 

shared with API Invoker in the discovery service. Then, 

subsequently, AEF resolves the actual destination address 

of the requested service API and forwards the initial 

request. 

The abovementioned services need to fulfill the 
authentication and authorization prerequisites. The 
capabilities of the services are presented under the assumption 
that API provider domain functions (i.e., AEF, APF, AMF) 
and API Invokers are already authorized by the CCF and they 
are active. The detailed security aspects are specified by 
3GPP in [6].   

B. SEAL 

1) SEAL Architecture 

SEAL was introduced in Rel. 16 to support easier and 

faster development and deployment of vertical apps [7]. 

While the demand to develop vertical app standards for 

different types of industries was continuously increasing, it 

became obvious that many auxiliary services, such as location 

management, are needed across multiple vertical apps. As a 

result, capturing these commonly used auxiliary services and 

offering them to verticals as a common service layer, will 

benefit both verticals, allowing them to focus only on the core 

features and functionality of the vertical app, and operators, 

saving them from enormous efforts and time to develop the 

corresponding services for each vertical. The above concept 

became reality with the standardization of SEAL architecture 

[5]. SEAL architecture enables these common services to be 

consumed by vertical apps over 3GPP, CAPIF compliant, 

northbound APIs.  SEAL architecture supports two functional 

models: on-network (i.e., SEAL-Uu), when the UE connects 

to the 3GPP network system to consume the service, and off-

network (i.e., SEAL-PC5), when UEs connect to each other 

directly. The functional architecture is depicted in Fig. 2. For 

simplification, we consider only the on-network model. 

The main functional entities of SEAL architecture are the 

following: 

• Vertical Application Layer Client (VAL client): This entity 

provides the client-side functionalities of the corresponding 

vertical app (e.g., Vehicle to Everything (V2X) client).  

• Vertical Application Layer Server (VAL server): This 

entity provides the server-side functionalities of the 

corresponding vertical app (e.g., V2X application server). 

If CAPIF is supported, VAL server acts as an AEF to 

provide the service APIs to the Vertical Application Server 

(VAS) or another VAE server. It can also act like an API 

Invoker to consume the service APIs, whether they 

provided by another VAL server.  

• SEAL Client: This entity provides the client-side 

functionalities corresponding to a specific SEAL service 

(e.g., Location Management client) 

• SEAL Server: This entity provides the server-side 

functionalities corresponding to a specific SEAL service 

(e.g., Location Management server). It can act as CAPIF’s 

API exposing function. 

Various deployment scenarios have been proposed in 

SEAL architecture, concerning the domain in which SEAL 

servers are deployed. According to [5] the SEAL servers can 

be deployed: a) in a single PLMN operator domain 

(centralized deployment), b) in multiple PLMN operator 

domains, as distributed function, with or without 



interconnection between the SEAL servers, c) in the VAL 

service provider domain or d) in a separate SEAL provider 

domain.  

2) SEAL Services 

 

The following section describes the common set of SEAL 

services designed to be used by vertical apps. 

• Location Management : Enables the vertical app to have 

access to network location information of its corresponding 

UEs. More specifically, this service can send reports on-

demand to a VAS about the location of its UEs, subscribe 

the VAS so as to receive notification when location 

information of UEs changes, share UE location information 

etc.  

• Group Management: Allows vertical apps to group UEs, 

thus enabling group management operations, such as 

enforce group policies, edit group configurations etc. The 

service also allows the vertical app to subscribe for and 

receive notifications when group information or status is 

modified. 

• Configuration Management: Enables the vertical app to 

create and manage configuration on its UEs (provide initial 

configuration, edit configuration, notify server when 

configuration changes etc.) 

• Identity Management: This service is responsible for the 

authentication and authorization procedures of a vertical 

app user.  

• Key Management: Enables a vertical app to support secure 

transfer of data by providing and storing encryption keys. 

• Network Resource Management: Allows a vertical app to 

manage network resources by managing (create, modify, 

delete) unicast and/or multicast bearers. 

C. VAE Layer 

VAE layer acts as a support layer between SEAL and a 

specific vertical application layer (e.g., V2X application 

client and server). VAE layer, by utilizing SEAL/NEF APIs 

and translating all the underlying network data to vertical 

application specific, enables the deployment of the actual 

vertical app. The functional model of VAE layer is depicted 

in Fig. 2. Similarly, to SEAL architecture, VAE supports both 

on-network and off-network model. Note that, both VAE 

Client and VAE Server are mutually-exclusive with VAL 

Client (SEAL) and VAL Server (SEAL), respectively. 

The most important entities of the VAE architecture are 

the following: 

• Vertical application specific client: Provides client-side 

functionalities corresponding to a specific vertical app 

(e.g., a platooning client in V2X use case). 

• Vertical application specific server: Provides server-side 

functionalities corresponding to a specific vertical app 

(e.g., a platooning server in V2X use case). As mentioned, 

vertical app can act as an API invoker, if CAPIF is adapted. 

Specifically, vertical app’s server side represents the 

invoker [1]. 

• VAE client: Provides the client-side support functions for a 

specific vertical app (e.g., deliver application messages to 

vertical app clients, receive monitoring reports from VAE 

server, provide location information to VAE server etc.) 

• VAE server: Provides the server-side support functions for 

a specific vertical app (e.g., communicate with the 

underlying network, provide service discovery, support 

resource adaptation etc.).  

 

Fig. 2. VAE-SEAL Functional Model 

According to [1], VAE server can be deployed either in a 

centralized manner, in which one VAE server supports one or 

more vertical app specific servers, or in distributed manner, in 

which one or more VAE servers (with or without 

interconnection between them) support one vertical 

application specific server. Furthermore, the VAE server can 

be deployed either in a PLMN operator domain or in a vertical 

service provider domain. 

As mentioned, VAE layer, utilizes the capabilities of the 

underlying SEAL, thus it provides additional vertical specific 

capabilities to enable the applications. 3GPP has already 

specified the VAE architecture for Vehicle to Everything 

(V2X) services [1]. Procedures and information flows of 

services are already described and some of them are offered 

as APIs. Interestingly, some examples for V2X services are 

V2X UE registration, application-level, location tracking, file 

distribution, V2X application resource management etc.  

Work and studies are ongoing also for Factories of the Future 

(FOF) and for Unmanned Aerial Systems (UAS), in TR 

23.745 and TS 23.255 respectively. 

III. VAE IMPLEMENTATION ALTERNATIVES   

To unlock the full potential of the 5G, the transition to a 
cloud native 5GC is an auspicious approach. However, the 
cloud-native deployment does not only refer to the 5GC, as it 
can have a direct impact to vertical specific applications as 
well, leveraging specific features in order to meet the 
requirements of the industry verticals. In the light of the 
above, this section describes three different cloud native 
approaches towards the deployment of the VAE, where the 
software is built upon microservices that can act 
independently. 

A. Container-based Deployment 

 In the case that the VAE makes use of multiple processes, 

the deployment could be realized using a Container Platform. 

The architectural approach of the proposed deployment is 

depicted in Fig. 3. The specific implementation provides an 

advantage in terms of flexibility to the developer during the 

coding process by allowing the use of simple tools towards 

the “packing” of the VAE to an image. The implementation 

of a REST API for the callback updates from the 5GC is also 



deemed necessary and the latter can also act as the endpoint 

to receive requests from the vertical app. To that end, a 

common library or framework can be utilized, so as to avoid 

coding the REST API backend from the beginning.  

 

Fig. 3. Container-based VAE realisation 

B. Function as a Service (Faas) Deployment 

When the VAE acts as a micro service (i.e. exposing 
Southbound APIs to other services and applications), the 
utilization of the Function as a Service (FaaS) ecosystem 
allows the deployment of the VAE in a serverless 
environment [8]. Fig. 4 represents the reference architecture 
of the proposed FaaS approach. By adopting a serverless 
approach, the VAE automatically excludes the option to have 
a built-in API backend, thus the vertical app can use the REST 
API endpoints of the FaaS Platform to communicate with the 
VAE. The VAE can also configure “on the fly” endpoints on 
the FaaS API in order to receive asynchronous callbacks from 
the 5GC. An optional database can be used from the VAE to 
empower a stateful approach. By this means, the VAE will be 
enhanced in terms of efficiency and can be treated as a 
standalone extension of the vertical app. The developer of the 
vertical app has the liberty to add processes and increase the 
complexity of the system, by offloading additional functions 
of the vertical app to the VAE framework. Using a FaaS 
approach is a straightforward process to horizontally scale 
across multiple end-devices, either statically or dynamically. 
The term dynamically, refers to the case that the administrator 
of the FaaS platform can configure limits that will increase or 
decrease the replicas of a VAE ad-hoc, based on the number 
of requests (or any other resources). 

 

 

Fig. 4. FaaS-based VAE realisation 

C. Container Deployment with a Message BUS 

When the VAE acts as micro-services, an alternative 
approach beyond the containerised deployment, enhancing 
the overall architecture, is the utilization of a communication 
framework between the VAE and the vertical 
application/service. A suitable candidate technology-enabler 
is a common Message Bus channel using message queue 
service, that can be applied to handle all the asynchronous 
interactions between the actors of the ecosystem (i.e., vertical 
app, VAE, clients). The architecture is depicted in Fig. 5. 

 

Fig. 5. Container with a message bus-VAE 

The bridging of the vertical app with VAE can be 
achieved via the publish/subscribe mode that the protocol 
provides, acting as an alternative solution to the traditional 
client-server communication model with endpoints. In such 
case a Message Queuing Telemetry Transport (MQTT) 
broker acts as an intermediate for the Message Queuing (MQ) 
client sending messages and the subscriber (vertical app) who 
is receiving those messages. However, the VAE requires a 
REST API backend in order to support the communication 
with the 5GC. Additional services (e.g., databases) could also 
be supported by the proposed architecture, thus fulfilling the 
MQ requirements.   

IV. QUALITATIVE COMPARISON OF THE DIFFERENT VAE 

IMPLEMENTATION ALTERNATIVES  

With the aim to highlight the pros and cons and evaluate 
the efficiency of the proposed cloud-native implementations, 
this section provides a qualitive comparison towards a list of 
KPIs that were deemed suitable for all the aforementioned use 
cases. The defined KPIs, in order to cross-evaluate the three 
different approaches, include efficiency in terms of coding, 
scalability and agility, as well as communication and function 
decoupling. 

A. Qualitative Evaluation of VAE Implementation 

Alternatives 

1) Container-based Deployment Qualitative Evaluation 
Due to the fact that all the libraries for the VAE 

implementation can be bundled within the selected image, 
deploying the VAE as a Container is a simple and effective 
approach. The dependencies between the components of the 
system can be isolated, allowing for the inclusion of several 
secondary applications, such as a database, allowing the 
provision of more complex VAEs and the support of 
advanced vertical services and applications. Since most 
container engines now operate across several platforms, the 
process requires a smaller set of programming skills, 
facilitating significantly the development efforts, as well as 
the technical expertise needed to deal with the programming 
task.  

However, the underling container platform adds a 
noticeable overhead in terms of performance, but it can be 
discounted compared to the management benefits that 
provides. It is worth noting that the scalability process 
requires both the VAE, as well as any additional applications, 
such as databases, to conform with horizontal scaling. 
Furthermore an additional load balancer may be required, as 
the VAE implementation increases the overhead effect, thus 
affecting both management and performance capabilities.  

 

2) FaaS-based Deployment Qualitative Evaluation 



The FaaS model deployment allows the automatic and 
independent scaling in horizontal manner, thus representing 
an efficient implementation towards the service of an 
application. Moreover, it utilizes effectively system’s 
resources, either on demand (dynamically) or with a 
predefined process. However, a drawback towards the 
specific deployment, is the fact that the developers have to 
establish the implementation of the VAE via the FaaS 
framework, based on the learning curve that the platform 
indicates. The management of the overall system is highly 
dependent on the maturity and the abstraction level of the 
FaaS platform. In order to support a production environment, 
the use of a FaaS platform, promoted by a wide community, 
is recommended. As far as the performance of the system is 
concerned, since a FaaS deployment uses an underling 
container platform, overhead is being added due to the 
provision of the Docker Engine. Most FaaS implementations 
bring up to the surface the cold start issue, which has an effect 
on certain types of applications, where latency is critical.  

3) Container Deployment with a Message BUS 

Qualitative Evaluation 
The Message Bus implementation aims to simplify the 

front-end interface by using an Message Queue (MQ) 
communication protocol. Adopting this approach can result in 
a more efficient adaptation and consumption of the 
request/replies by the vertical app. Most MQ communications 
are implemented in a publish/subscribe manner, thus various 
aspects of the vertical app can be subscribed or publish to the 
VAE. This method could enable the vertical app to expose the 
VAE API to the clients as well via direct communication. 
Moreover, the asynchronous communication enabled by the 
message queues, optimizes the data flows between the 
components, resulting in better performance of the system. 
With respect to the overall management of the architecture, 
the queues reduce the dependencies between the involved 
components leading to coding simplicity.  

B. Cross Comparison Score and Technology Selection 

 Table I comprises the qualitive cross comparison KPIs for 
the proposed VAE implementations, according to the 
aforementioned qualitative analysis. 

TABLE I.  QUALITATIVE COMPARISON OF KPIS 

Criterion/KPI 

Implementation Approach 

Isolated 

Container  

Container 

with FaaS 

platform 

Containers 

with Message 

Bus 

Vertical Scaling  * *** ** 

Horizontal Scaling *** ** ** 

Technology 

Maturity 

*** * ** 

Orchestration 

Options 

*** * ** 

Code management *** ** ** 

Performance * ** ** 

Data and control 
decoupling 

** ** *** 

SCORE 76% (16/21) 62% (13/21) 71% (15/21) 

 

According to Table 1, the various KPIs are listed, 
considering the agility of the deployment option, as well as 
the scaling easiness, the technology maturity, but also the 
orchestration options, together with coding requirements and 

performance aspects, as well as data and control decoupling. 
The comparison shows that all alternatives achieve a 
satisfactory score. However, the isolated container approach 
seems to be more preferable, since its simplicity contributes 
to its easiness in terms of code management, scaling and 
orchestration options. Also technology maturing plays a 
significant role, especially for deployments within a 
production environment, such as a 5G network of a mobile 
operator. The additions of a message BUS, seems also to be a 
highly preferable solution, since it decouples the control plane 
from the data plane, allowing policies enforcement and 
prioritization in the message management and the executions 
of functions. Finally, the FaaS framework, also scores high, 
and it seems to be the rest preferable approach, mainly due to 
the extra complexity that it introduces, which affects also the 
performance and the scaling capabilities of the overall system, 
considering also its impact on the orchestration. Moreover, 
the FaaS framework may cause also a technology locked-in, 
which will affect the smooth evolution of the platform in case 
that the FaaS framework does not continue to fost and grow 
as expected. 

V. CONCLUSIONS 

This paper presented the SBA of the 5GC Network, and 

3GPP’s pioneering frameworks that enable data exposure to 

third parties through the northbound APIs. CAPIF, SEAL and 

VAE are undoubtedly the key enabling frameworks to unlock 

the capabilities of a programmable 5G network. Three cloud 

native architectural approaches for the communication 

between the network interfaces and the VAE were proposed 

and a qualitive comparison was performed in order to 

showcase the most efficient solution.  
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