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Abstract— The primary goal of Network Function 

Virtualization (NFV) is the migration of physical network 

functions to software versions running on virtual machines (VM) 

in cloud computing environments. Rapid developments in 

virtualization technologies have made high-speed network 

connections and line rate packet processing viable in virtualized 

infrastructure environments. Deep Packet Inspection (DPI) of 

network traffic in the form of a computational intensive 

virtualized network function (VNF) was selected as a 

representative use-case. The DPI use case was used, to 

demonstrate the benefits of using SR-IOV enabled devices with 

DPDK to support performant Virtual Network Function (VNF) 

deployments.. Performance evaluation of VNF versions using 

LibPCAP, SR-IOV and DPDK have been carried out. The results 

demonstrate that significantly higher packet throughput 

performance can be achieved when using SR-IOV and DPDK in 

unison in comparison to packet processing with the native Linux 

kernel network stack. 
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I.  INTRODUCTION 

The proliferation of software defined networking (SDN) and 
the rollout of network function virtualization (NFV) has 
attracted significant attention from the Telecommunications 
domain with the promise of a new network design approach. 
NFV’s network model is focused on the implementation of 
software based network functions that run on virtualized 
infrastructure. This concept enables multiple virtualized 
network functions to operate on the same high-volume server 
simultaneously. As a result, the operator gains significant 
flexibility and agility, by having the ability to dynamically start, 
reconfigure and terminate VNFs. However, in order to deliver 
these expectations a significant number of considerations have 
to be taken into account. In conventional network devices the 
software component is highly optimized for its custom hardware 
platform. It is this close connection between the software and 
hardware element which provides the expected performance and 
reliability for carrier-grade network functions. 

When VNFs are deployed on Virtual Machines (VMs) 
hosted in a cloud infrastructure, for example OpenStack, the 
amount of network traffic that a single server appliance is 
expected to handle is increased significantly. When multiple 
VNFs run simultaneously and each one of them processes a 
significant number of packets per second, significant 
performance challenges may be generated. The system’s 

architecture features such as memory access, task and resource 
allocations, network I/O etc. can have significant influence on 
performance. 

As I/O performance is critical in cloud infrastructures, 
virtualization optimizations are required in order to maximize 
the utilization of computer system resources. The Single Root 
I/O Virtualization (SR-IOV) [1] is a specification released by the 
PCI-SIG, which defines hardware enhancements that reduce 
hypervisor’s interactions with a VM, in order to improve its data 
processing performance. An SR-IOV enabled device is capable 
of spawning various “light” instances of PCI functions, named 
Virtual Functions (VFs). Each VF can be pinned to a VM, 
granting direct access to its physical resources. Exploiting this 
feature, multiple VMs can share the same physical PCI device 
resources, thus achieving high performance with no significant 
additional CPU overhead. As SR-IOV provides direct access 
and control to the system’s hardware resources, it enables the 
efficient allocation of low-level network resources.  

In order to fully exploit the system’s resources, both in the 
network and computational domains, and at the same time 
enhance and facilitate the implementation of intensive network 
applications, Intel has developed the Data Plane Development 
Kit (Intel® DPDK) [2]. DPDK comprises of a set of libraries 
that support efficient implementations of network functions 
through access to the system’s network interface card (NIC). 
DPDK offers network function developers a set of tools to build 
high speed data plane applications. DPDK operates in polling 
mode for packet processing, instead of the default interrupt 
mode. The polling mode operation adopts the busy-wait 
technique, continuously checking for state changes in the 
network interface. This mitigates interruption in packet 
processing, as it bypasses the kernel, efficiently consuming CPU 
cycles, which leads to increased packet throughput [3]. Using 
DPDK network packet ingress and egress is faster in comparison 
to the standard Linux kernel network stack as applications are 
supported in userspace, thus bypassing kernel network stack 
bottlenecks. 

In this paper, a network and computational intensive use-
case has been selected, in order to demonstrate the benefits of 
using SR-IOV enabled devices with DPDK to support 
performant VNF deployments. Deep Packet Inspection (DPI) of 
network traffic was selected as a viable and suitable use case. 
The required packet analysis and flow information processes 
consume a significant amount of computing resources, as all 



network flows and most of their packets need to be processed 
deeper than protocol headers, in many cases at payload level, to 
provide accurate and precise packet identification of network 
traffic. DPI is primarily used to identify network traffic profiles 
for various security, or network management purposes. DPI 
analyzes IP traffic from Layers 2 to 7 including headers and data 
protocol structures together with the payload of the packet’s 
message. This information is used to identify the various 
application protocols and traffic flows. Collection of this 
information can be used to provide a traffic classification of the 
network being monitored. Various commercial DPI solutions 
exist from companies such as WindRiver [4], PACE [5] and 
Qosmos [6]. The Qosmos DPI offers a virtualized solution built 
on Qosmos’ flagship product ixEngine, which has established 
itself as the de facto industry-standard DPI engine for developers 
of telecoms and enterprise solutions. An alternative free open-
source solution is nDPI [7]. NDPI is an ntop-maintained superset 
of the popular OpenDPI library. NDPI has performed better, 
compared to other open source DPI libraries and Cisco’s NBAR, 
in extensive traffic recognition experiments performed in [8]. 

The DPI solution described in this paper is built using the 
nDPI library. This approach uses only an indicative, small 
number of initial packets from each flow in order to identify the 
payload content and does not inspect each packet. In this respect 
it follows a Packet Based per Flow State (PBFS). This method 
uses a table to track each session based on the 5-tuples (source 
address, destination address, source port, destination port, and 
the transport protocol) that is maintained for each flow. 

The paper is organized as follows: Section II outlines the 
problem statement, Section III presents the detailed architecture 
and solution implementation, Section IV evaluates and presents 
the performance results of the proposed solution. Section V 
extends the discussion on automatic VNF deployment and 
enhanced platform awareness in current virtualized 
infrastructures. Finally, Section VI concludes the paper and 
describes the next steps for this research work. 

II. PROBLEM STATEMENT 

Cloud infrastructure solutions such as OpenStack, run on top 
of a broad range of network components offered by current 
operating systems, such as routing, filtering, flow 
reconstruction, etc. These capabilities generate significant 
overhead, resulting in performance penalties, as each packet 
passes through the OS kernel and is not directly accessible to 
userspace. The Linux network stack, which is commonly used 
as a basis for cloud networking solutions, sets as its primary goal 
the provision of a general purpose network stack for a fully 
functional operating system. Therefore, a standard Linux 
network stack cannot scale to the performance level required for 
a software router application. In general, OpenStack’s 
networking service Neutron is essentially built upon an Open 
vSwitch (OVS) instance, which consists of various native OVS 
virtual ports, TAP virtual network kernel interfaces and kernel 
bridges connecting them, for each VM instance. This multi-
bridge virtual interface setup, introduces substantial delays in 
packet forwarding performance as every packet must pass 
through and be processed by the kernel multiple times [9], before 
it reaches its final destination. With this form of architectural 

design the operating system’s kernel performance quickly 
becomes a bottleneck. 

III. DESCRIPTION AND IMPLEMENTATION 

Two setup configurations were utilized for performance 
testing of the traffic classifier VNF. Both test deployments were 
performed using servers with Intel® Xeon® E5-2620 v3 @ 
2.40GHz CPUs. Each server had a dual port 10Gbit Intel® 
Ethernet Converged Network Adapter X520-T2. In both 
configurations one server was used as a traffic generator and the 
second server hosted the DPI application. The first test was 
performed at the physical layer meaning the DPI application was 
executed directly using the physical NICs, whereas in the second 
test the DPI application was deployed as VM through a KVM 
hypervisor with the packets arriving through an SR-IOV fast 
path. In both performance tests two versions of the DPI 
application were evaluated one using LibPCAP and one using 
DPDK. The purpose of the first configuration was to benchmark 
and set a baseline performance for the DPDK enhanced DPI 
application. Additionally the test evaluated the cost overhead of 
virtualization on performance. Amongst various packet 
acceleration candidate frameworks Netmap [10], PF_RING 
[11], and DPDK that provide zero-copy, kernel bypass, and 
support for multi-queuing capabilities, Intel® DPDK was 
selected to implement the accelerated version of the VNF, as it 
provides advanced user-level functionalities, such as a multi-
core framework with enhanced NUMA-awareness, and libraries 
for packet manipulation across different cores. The DPDK 
libraries also provide two execution models: a pipeline model 
where one core has the capability of transferring packets from 
the receiving NIC to a second core for processing, and the run-
to-completion model where packets are distributed among all 
cores for accelerated processing. The features of packet 
scheduling and the different execution models make the DPDK 
framework more than just and I/O library. In the current VNF 
implementation only a baseline set of features have been used 
from the DPDK libraries, as more complex packet processing 
algorithms using DPDK capabilities will be investigated in 
future work.  

A. VM testbed with SR-IOV and DPDK 

In figures 1 and 2 a detailed overview of the two 
configuration setups are shown. Figure 1 shows the baseline 
setup, where no additional modifications were made to enhance 
the performance of the DPI application. In both the physical NIC 
and virtual NIC driver layers the packets are handled by the 
Linux kernel network stack. The DPI application in both tests 
(physical and virtualized), uses the LibPCAP in order to read 
and analyze the network traffic received. 

Figure 2 shows the enhanced architecture where SR-IOV has 
been enabled at the physical NIC of the host server, the 
corresponding VF driver has been attached to the DPI virtual 
machine, and finally the virtual NIC is loaded with the DPDK 
driver for faster NIC-userspace communication. In this case the 
DPI application reads and processes the packets received using 
the DPDK framework, in both the physical and virtualized 
experiment. 



 

Fig. 1. Standard Setup 

Figure 2 shows SR-IOV enablement at the physical NIC of 
the host server. A corresponding VF driver is attached to the DPI 
virtual machine. The virtual NIC is loaded with the DPDK driver 
for faster NIC-userspace communication. In this configuration 
the DPI application reads and processes the packets received 
using the DPDK framework, in both the physical and virtualized 
experiments. 

 

Fig. 2. Setup with SR-IOV enabled ports and DPDK on the VM. 

The primary goal of these experiments was to evaluate and 
quantify the performance improvements in a VNF enabled by 
SR-IOV and DPDK compared to the standard Linux network 
stack. Additionally, the purpose of the evaluation tests was to 
quantify the cost of virtualization in a computational intensive 
network function, such as a DPI.  

For the evaluation and benchmarking of the DPI VNF the 
DPDK PktGen [12] traffic generator was used, which is built on 

top of the DPDK fast packet processing framework in order to 
achieve line-rate traffic generation. The PktGen is capable of 
generating 10Gbps rate of traffic even with 64 byte frames. For 
the purpose of the experiments PCAP traffic replay based, on a 
data file, was used and retransmitted at a 10Gbps rate. Real 
traffic traces captured in NCSRD were used to generate the 
PCAP file. 

Figure 3 shows the distribution of the packet sizes. As it can 
be clearly seen, most packets belong to the size group of 1280-
1518 bytes, and the second most popular size group is the 40-79 
bytes category. Analysis of the PCAP file indicates that the DPI 
is exposed to a rich set of traffic types and protocols which 
ensured a realistic test scenario. In total the captured PCAP 
traffic file consists of 2343 unique flows and 28 different 
application protocols. 

 

Fig. 3. Packet Size Distribution Histogram. 

B. nDPI integration with DPDK 

The standard implementation of nDPI is built on top of the 
packet processing library LibPCAP. As the interface receives 
packets, nDPI can extract the packet’s timestamp from the pcap 
header. The pcap header is then removed in order to access and 
read the content of the packet. DPDK uses its own primitive 
types to store and access data, however conversion is required in 
order for the received packet to be DPDK-compatible. 
Conversions included network types, e.g. IP header types, as 
well as primitive types, e.g. unsigned char types, in order to fully 
exploit the user level capabilities of the DPDK framework. 

Apart from the type conversion and porting to DPDK, a top-
down redesign of the nDPI packet processing has been carried 
out, in order to bring the DPDK plane to a layer that nDPI 
recognizes. The standard nDPI library is mainly designed to 
function properly with LibPCAP, in terms of accessing network 
packet data. Various modifications on the nDPI end were made 
in order to facilitate the integration with the DPDK framework. 

C. VM Interconnection 

Service Function Chaining (SFC), traffic forwarding and 
inter-VM communications are required for the VNF to function 
correctly. However functional integration of the VNF into 
OpenStack’s networking environment, and more specifically 
with the Neutron service is non-trivial and remains to be 
implemented as Neutron currently offers limited abilities to 



support arbitrary traffic steering. Future enhancements to this 
work will include the integration of the current work in an 
automated, flexible and efficient network appliance for 
virtualized network infrastructures, as both DPDK and SR-IOV 
currently require various complex system configurations to 
function properly and provide improved performance. 

In order to support direct traffic forwarding, i.e. the virtual 
network interface of one Virtual Network Function Component 
(VNFC) is directly connected to the virtual network interface of 
another VNFC’s, modification of Neutron’s OVS is required. 
Each virtual network interface of a VNFC is reflected upon one 
TAP-virtual network kernel device, a virtual port on Neutron’s 
OVS, and a virtual bridge connecting them. Packets travel from 
the VNFC to Neutron’s OVS through the Linux kernel. The 
virtual kernel bridges of the two VNFCs need to be shut down 
and removed, then an OVSDB rule needs to be applied at the 
Neutron OVS. This rule defines an all-forwarding policy 
between the OVS ports of the corresponding VNFCs. 

IV. EXPERIMENTAL RESULTS 

This section presents the results of comparison tests between 
DPDK and LibPCAP versions of the DPI in physical and 
virtualized environments. The traffic for both experimental 
evaluations was generated by a traffic generator in a linear 
manner from 1 to 100%, with 1% increments per second. Traffic 
statistics were collected from the VNF every second and were 
post processed for performance evaluation. 

A comparison of the packet processing performance of the 
LibPCAP based deployment of the DPI versus the DPDK 
accelerated version of the VNF under a bare metal scenario is 
shown in Figure 4. The results clearly show that the DPI’s 
performance is significantly improved when DPDK is used to 
accelerate packet processing. The LibPCAP version exhibited 
saturation at approximate 1Gbps. This throughput compares 
poorly in comparison to the approximately line rate performance 
of the DPDK accelerated version. 

 
Fig. 4. Physical Testbed DPDK vs LibPcap. 

A second set of experiments focused on identifying the effect 
of combining SR-IOV and DPDK on DPI performance when 
deployed as a VM. A linear scaling network traffic load up to 
10Gbps was used to stress test both the LibPCAP and SR-
IOV/DPDK versions of the DPI VM. 

As shown in Figure 5 the SR-IOV/DPDK version achieves 
approximately 81% of the physical DPDK testbed packet 

transmission performance. The LibPCAP version displayed 
saturation effect at 1Gbps with an 87.5% throughput reduction 
in comparison to the DPDK version. The results also indicate 
that DPDK’s performance in the virtualized scenario is 
degraded, approximately 19% in comparison to the 
corresponding physical test. This performance degradation can 
be explained as DPDK runs on a virtualized environment, and 
does not really bind a CPU core, so thread/CPU isolation is not 
really performed. 

The results indicate the promising performance of the 
virtualized DPI solution, and a clear improvement when DPDK 
is utilizing. The gap in performance between the physical and 
the virtualized solution shows further optimization is required in 
order for the VNF to achieve performance close to the 
corresponding physical DPI solution i.e. line rate. Additionally, 
it is clear that despite the use of SR-IOV the network kernel stack 
remains the bottleneck in the packet processing path. 

 
Fig. 5. Virtual Machine over SR-IOV Testbed DPDK vs LibPcap. 

V. CONSIDERATIONS ON AUTOMATIC DEPLOYMENT 

The previous section provides evidence that packet 
acceleration technology solutions and their appropriate 
integration can provide comparable performance for virtualized 
instantiations of real physical equipment running network 
functions (e.g. middle boxes). However, current virtualized 
infrastructure environments for hosting VNFs pose a number of 
management and configuration challenges. . For example with 
OpenStack which has established itself as the de-facto open 
source solution for the implementation and management of 
cloud infrastructures, significant manual configuration is 
required in order to create the required service chain links 
between VNFs correctly and in a performant manner. 

However, assuming that all the pre and post configurations 
considerations have been addressed, the VNF implementation 
should not be agnostic to the hosting platform capabilities. 
Essentially, features such as DPDK need to be considered 
carefully during the development of a VNF as well during 
testing before deployment in a real world environment. 
Additionally efforts to enhance the platform awareness of 
OpenStack and other cloud frameworks are gaining momentum. 
Increased platform awareness will support appropriate and 
automated mapping of VNFs to the most appropriate compute 
nodes that have required platform features. 



Due to DPDK’s mode of operation within a VM, or on bare 
metal, scaling mechanisms that depend on CPU usage 
monitoring are incapable of triggering correct decisions. This is 
due to the fact that when DPDK is used in a VNF, utilization for 
a CPU core reaches the cap of 100% regardless of the traffic load 
on the network interface (virtual or not). Additionally, when 
DPDK is used the NIC is no longer recognized by the Linux 
kernel stack. Therefore, the NIC has no TCP/IP stack, as the 
kernel is bypassed. Also, a DPDK-enabled NIC cannot respond 
to ICMP requests, and is therefore not discoverable from a Layer 
3 network perspective. This adds some additional overhead to 
the development of a DPDK-enabled VNF. These are acceptable 
drawbacks in order to achieve significantly improved 
performance, however auto-scaling mechanisms inherent in the 
OpenStack framework or even manual ones will fail to scale 
correctly. The solution is to use VNF specific monitoring 
information, internal to the VNF and to create new rules and 
methods for scaling the VNF when required.  

Based on the previous considerations appropriate selection 
of data-path acceleration features for VNFs is a trade-off with 
respect to infrastructure and management flexibility. This 
selection affects various actors to varying extents in the NFV 
chain. In summary:  

 The Function Developer  

o VNF code development (code should be factored 
appropriately to support DPDK). This requirement has 
limited risk as DPDK offers a large library of methods in 
order to serve integration and porting of a number of 
network functions. 

o  VNF development environment: consideration of 
enhanced platform features during the development 
process can be challenging due to the heterogeneity of the 
operational environments where the VNF will run.  

 The Infrastructure Provider  

o Vendor lock-in and cost. Procurement of equipment that 
provide the enhanced capabilities. For example VNFs 
which require specialized PCIe co-processing cards (e.g. 
FPGAs) to provide specific packet processing capabilities 
can potentially result in a degree of vendor dependency. 
However, as the cloud ecosystem is primarily based around 
technology standards vendor lock-in is less of an issue in 
comparison to other technology areas.  

o Provision of platform information to an Orchestrator, in 
order to achieve the best mapping of application types to 
resource allocation among an NFVI-Point of Presence 
(PoP) compute nodes.   

 The Service Provider  

o Achieving support at an Orchestration level of the 
enhanced platform features (i.e. infrastructure repository, 
service mapping modules) in order to map VNF required 
resources and capabilities to the underlying infrastructure. 

VI. CONCLUSIONS AND FUTURE WORK 

A virtualized DPI which supports high-speed network packet 
processing has been described. The VNF in various 
instantiations has been benchmarked to evaluate its 
performance. The DPI VNF was implemented both using 
LibPCAP and Intel’s DPDK framework. The SR-IOV 
framework was also used, in order to maximize packet 
throughput in a virtualized environment. Additionally, various 
considerations and discussions have been presented regarding 
the automatic deployment of enhanced VNFs in cloud 
environments. Various limitations and development restraints 
have been described and analyzed. The results of the 
performance evaluation results showed that with SR-IOV and 
DPDK a significantly higher performance can be achieved 
compared to packet processing with the Linux kernel network 
stack. Additional work is required to close the remaining gap 
with the SR-IOV/DPDK enabled version of the DPI and 10Gbps 
line rate performance. The next steps in this work will focus on 
NUMA and core pinning and optimization of huge page sizes in 
an effort to achieve near line rate performance for the DPI. 
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