
Enhancing VNF Performance by Exploiting SR-IOV

and DPDK Packet Processing Acceleration
Michail-Alexandros Kourtis1,2, Georgios Xilouris2, Vincenzo Riccobene3, Michael J. McGrath3, Giuseppe Petralia3,

Harilaos Koumaras2, Georgios Gardikis4, Fidel Liberal1
1
Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao, Spain,

2
Institute of Informatics and Telecommunications, NCSR “Demokritos”, Athens, Greece

3
Intel Labs Europe, Leixlip, Co. Kildare, Ireland

4
R&D Department, Space Hellas S.A. Athens, Greece

Abstract— The primary goal of Network Function

Virtualization (NFV) is the migration of physical network

functions to software versions running on virtual machines (VM)

in cloud computing environments. Rapid developments in

virtualization technologies have made high-speed network

connections and line rate packet processing viable in virtualized

infrastructure environments. Deep Packet Inspection (DPI) of

network traffic in the form of a computational intensive

virtualized network function (VNF) was selected as a

representative use-case. The DPI use case was used, to

demonstrate the benefits of using SR-IOV enabled devices with

DPDK to support performant Virtual Network Function (VNF)

deployments.. Performance evaluation of VNF versions using

LibPCAP, SR-IOV and DPDK have been carried out. The results

demonstrate that significantly higher packet throughput

performance can be achieved when using SR-IOV and DPDK in

unison in comparison to packet processing with the native Linux

kernel network stack.

Keywords—SR-IOV, DPDK,NFV,VNF,LibPCAP, DPI

I. INTRODUCTION

The proliferation of software defined networking (SDN) and
the rollout of network function virtualization (NFV) has
attracted significant attention from the Telecommunications
domain with the promise of a new network design approach.
NFV’s network model is focused on the implementation of
software based network functions that run on virtualized
infrastructure. This concept enables multiple virtualized
network functions to operate on the same high-volume server
simultaneously. As a result, the operator gains significant
flexibility and agility, by having the ability to dynamically start,
reconfigure and terminate VNFs. However, in order to deliver
these expectations a significant number of considerations have
to be taken into account. In conventional network devices the
software component is highly optimized for its custom hardware
platform. It is this close connection between the software and
hardware element which provides the expected performance and
reliability for carrier-grade network functions.

When VNFs are deployed on Virtual Machines (VMs)
hosted in a cloud infrastructure, for example OpenStack, the
amount of network traffic that a single server appliance is
expected to handle is increased significantly. When multiple
VNFs run simultaneously and each one of them processes a
significant number of packets per second, significant
performance challenges may be generated. The system’s

architecture features such as memory access, task and resource
allocations, network I/O etc. can have significant influence on
performance.

As I/O performance is critical in cloud infrastructures,
virtualization optimizations are required in order to maximize
the utilization of computer system resources. The Single Root
I/O Virtualization (SR-IOV) [1] is a specification released by the
PCI-SIG, which defines hardware enhancements that reduce
hypervisor’s interactions with a VM, in order to improve its data
processing performance. An SR-IOV enabled device is capable
of spawning various “light” instances of PCI functions, named
Virtual Functions (VFs). Each VF can be pinned to a VM,
granting direct access to its physical resources. Exploiting this
feature, multiple VMs can share the same physical PCI device
resources, thus achieving high performance with no significant
additional CPU overhead. As SR-IOV provides direct access
and control to the system’s hardware resources, it enables the
efficient allocation of low-level network resources.

In order to fully exploit the system’s resources, both in the
network and computational domains, and at the same time
enhance and facilitate the implementation of intensive network
applications, Intel has developed the Data Plane Development
Kit (Intel® DPDK) [2]. DPDK comprises of a set of libraries
that support efficient implementations of network functions
through access to the system’s network interface card (NIC).
DPDK offers network function developers a set of tools to build
high speed data plane applications. DPDK operates in polling
mode for packet processing, instead of the default interrupt
mode. The polling mode operation adopts the busy-wait
technique, continuously checking for state changes in the
network interface. This mitigates interruption in packet
processing, as it bypasses the kernel, efficiently consuming CPU
cycles, which leads to increased packet throughput [3]. Using
DPDK network packet ingress and egress is faster in comparison
to the standard Linux kernel network stack as applications are
supported in userspace, thus bypassing kernel network stack
bottlenecks.

In this paper, a network and computational intensive use-
case has been selected, in order to demonstrate the benefits of
using SR-IOV enabled devices with DPDK to support
performant VNF deployments. Deep Packet Inspection (DPI) of
network traffic was selected as a viable and suitable use case.
The required packet analysis and flow information processes
consume a significant amount of computing resources, as all

network flows and most of their packets need to be processed
deeper than protocol headers, in many cases at payload level, to
provide accurate and precise packet identification of network
traffic. DPI is primarily used to identify network traffic profiles
for various security, or network management purposes. DPI
analyzes IP traffic from Layers 2 to 7 including headers and data
protocol structures together with the payload of the packet’s
message. This information is used to identify the various
application protocols and traffic flows. Collection of this
information can be used to provide a traffic classification of the
network being monitored. Various commercial DPI solutions
exist from companies such as WindRiver [4], PACE [5] and
Qosmos [6]. The Qosmos DPI offers a virtualized solution built
on Qosmos’ flagship product ixEngine, which has established
itself as the de facto industry-standard DPI engine for developers
of telecoms and enterprise solutions. An alternative free open-
source solution is nDPI [7]. NDPI is an ntop-maintained superset
of the popular OpenDPI library. NDPI has performed better,
compared to other open source DPI libraries and Cisco’s NBAR,
in extensive traffic recognition experiments performed in [8].

The DPI solution described in this paper is built using the
nDPI library. This approach uses only an indicative, small
number of initial packets from each flow in order to identify the
payload content and does not inspect each packet. In this respect
it follows a Packet Based per Flow State (PBFS). This method
uses a table to track each session based on the 5-tuples (source
address, destination address, source port, destination port, and
the transport protocol) that is maintained for each flow.

The paper is organized as follows: Section II outlines the
problem statement, Section III presents the detailed architecture
and solution implementation, Section IV evaluates and presents
the performance results of the proposed solution. Section V
extends the discussion on automatic VNF deployment and
enhanced platform awareness in current virtualized
infrastructures. Finally, Section VI concludes the paper and
describes the next steps for this research work.

II. PROBLEM STATEMENT

Cloud infrastructure solutions such as OpenStack, run on top
of a broad range of network components offered by current
operating systems, such as routing, filtering, flow
reconstruction, etc. These capabilities generate significant
overhead, resulting in performance penalties, as each packet
passes through the OS kernel and is not directly accessible to
userspace. The Linux network stack, which is commonly used
as a basis for cloud networking solutions, sets as its primary goal
the provision of a general purpose network stack for a fully
functional operating system. Therefore, a standard Linux
network stack cannot scale to the performance level required for
a software router application. In general, OpenStack’s
networking service Neutron is essentially built upon an Open
vSwitch (OVS) instance, which consists of various native OVS
virtual ports, TAP virtual network kernel interfaces and kernel
bridges connecting them, for each VM instance. This multi-
bridge virtual interface setup, introduces substantial delays in
packet forwarding performance as every packet must pass
through and be processed by the kernel multiple times [9], before
it reaches its final destination. With this form of architectural

design the operating system’s kernel performance quickly
becomes a bottleneck.

III. DESCRIPTION AND IMPLEMENTATION

Two setup configurations were utilized for performance
testing of the traffic classifier VNF. Both test deployments were
performed using servers with Intel® Xeon® E5-2620 v3 @
2.40GHz CPUs. Each server had a dual port 10Gbit Intel®
Ethernet Converged Network Adapter X520-T2. In both
configurations one server was used as a traffic generator and the
second server hosted the DPI application. The first test was
performed at the physical layer meaning the DPI application was
executed directly using the physical NICs, whereas in the second
test the DPI application was deployed as VM through a KVM
hypervisor with the packets arriving through an SR-IOV fast
path. In both performance tests two versions of the DPI
application were evaluated one using LibPCAP and one using
DPDK. The purpose of the first configuration was to benchmark
and set a baseline performance for the DPDK enhanced DPI
application. Additionally the test evaluated the cost overhead of
virtualization on performance. Amongst various packet
acceleration candidate frameworks Netmap [10], PF_RING
[11], and DPDK that provide zero-copy, kernel bypass, and
support for multi-queuing capabilities, Intel® DPDK was
selected to implement the accelerated version of the VNF, as it
provides advanced user-level functionalities, such as a multi-
core framework with enhanced NUMA-awareness, and libraries
for packet manipulation across different cores. The DPDK
libraries also provide two execution models: a pipeline model
where one core has the capability of transferring packets from
the receiving NIC to a second core for processing, and the run-
to-completion model where packets are distributed among all
cores for accelerated processing. The features of packet
scheduling and the different execution models make the DPDK
framework more than just and I/O library. In the current VNF
implementation only a baseline set of features have been used
from the DPDK libraries, as more complex packet processing
algorithms using DPDK capabilities will be investigated in
future work.

A. VM testbed with SR-IOV and DPDK

In figures 1 and 2 a detailed overview of the two
configuration setups are shown. Figure 1 shows the baseline
setup, where no additional modifications were made to enhance
the performance of the DPI application. In both the physical NIC
and virtual NIC driver layers the packets are handled by the
Linux kernel network stack. The DPI application in both tests
(physical and virtualized), uses the LibPCAP in order to read
and analyze the network traffic received.

Figure 2 shows the enhanced architecture where SR-IOV has
been enabled at the physical NIC of the host server, the
corresponding VF driver has been attached to the DPI virtual
machine, and finally the virtual NIC is loaded with the DPDK
driver for faster NIC-userspace communication. In this case the
DPI application reads and processes the packets received using
the DPDK framework, in both the physical and virtualized
experiment.

Fig. 1. Standard Setup

Figure 2 shows SR-IOV enablement at the physical NIC of
the host server. A corresponding VF driver is attached to the DPI
virtual machine. The virtual NIC is loaded with the DPDK driver
for faster NIC-userspace communication. In this configuration
the DPI application reads and processes the packets received
using the DPDK framework, in both the physical and virtualized
experiments.

Fig. 2. Setup with SR-IOV enabled ports and DPDK on the VM.

The primary goal of these experiments was to evaluate and
quantify the performance improvements in a VNF enabled by
SR-IOV and DPDK compared to the standard Linux network
stack. Additionally, the purpose of the evaluation tests was to
quantify the cost of virtualization in a computational intensive
network function, such as a DPI.

For the evaluation and benchmarking of the DPI VNF the
DPDK PktGen [12] traffic generator was used, which is built on

top of the DPDK fast packet processing framework in order to
achieve line-rate traffic generation. The PktGen is capable of
generating 10Gbps rate of traffic even with 64 byte frames. For
the purpose of the experiments PCAP traffic replay based, on a
data file, was used and retransmitted at a 10Gbps rate. Real
traffic traces captured in NCSRD were used to generate the
PCAP file.

Figure 3 shows the distribution of the packet sizes. As it can
be clearly seen, most packets belong to the size group of 1280-
1518 bytes, and the second most popular size group is the 40-79
bytes category. Analysis of the PCAP file indicates that the DPI
is exposed to a rich set of traffic types and protocols which
ensured a realistic test scenario. In total the captured PCAP
traffic file consists of 2343 unique flows and 28 different
application protocols.

Fig. 3. Packet Size Distribution Histogram.

B. nDPI integration with DPDK

The standard implementation of nDPI is built on top of the
packet processing library LibPCAP. As the interface receives
packets, nDPI can extract the packet’s timestamp from the pcap
header. The pcap header is then removed in order to access and
read the content of the packet. DPDK uses its own primitive
types to store and access data, however conversion is required in
order for the received packet to be DPDK-compatible.
Conversions included network types, e.g. IP header types, as
well as primitive types, e.g. unsigned char types, in order to fully
exploit the user level capabilities of the DPDK framework.

Apart from the type conversion and porting to DPDK, a top-
down redesign of the nDPI packet processing has been carried
out, in order to bring the DPDK plane to a layer that nDPI
recognizes. The standard nDPI library is mainly designed to
function properly with LibPCAP, in terms of accessing network
packet data. Various modifications on the nDPI end were made
in order to facilitate the integration with the DPDK framework.

C. VM Interconnection

Service Function Chaining (SFC), traffic forwarding and
inter-VM communications are required for the VNF to function
correctly. However functional integration of the VNF into
OpenStack’s networking environment, and more specifically
with the Neutron service is non-trivial and remains to be
implemented as Neutron currently offers limited abilities to

support arbitrary traffic steering. Future enhancements to this
work will include the integration of the current work in an
automated, flexible and efficient network appliance for
virtualized network infrastructures, as both DPDK and SR-IOV
currently require various complex system configurations to
function properly and provide improved performance.

In order to support direct traffic forwarding, i.e. the virtual
network interface of one Virtual Network Function Component
(VNFC) is directly connected to the virtual network interface of
another VNFC’s, modification of Neutron’s OVS is required.
Each virtual network interface of a VNFC is reflected upon one
TAP-virtual network kernel device, a virtual port on Neutron’s
OVS, and a virtual bridge connecting them. Packets travel from
the VNFC to Neutron’s OVS through the Linux kernel. The
virtual kernel bridges of the two VNFCs need to be shut down
and removed, then an OVSDB rule needs to be applied at the
Neutron OVS. This rule defines an all-forwarding policy
between the OVS ports of the corresponding VNFCs.

IV. EXPERIMENTAL RESULTS

This section presents the results of comparison tests between
DPDK and LibPCAP versions of the DPI in physical and
virtualized environments. The traffic for both experimental
evaluations was generated by a traffic generator in a linear
manner from 1 to 100%, with 1% increments per second. Traffic
statistics were collected from the VNF every second and were
post processed for performance evaluation.

A comparison of the packet processing performance of the
LibPCAP based deployment of the DPI versus the DPDK
accelerated version of the VNF under a bare metal scenario is
shown in Figure 4. The results clearly show that the DPI’s
performance is significantly improved when DPDK is used to
accelerate packet processing. The LibPCAP version exhibited
saturation at approximate 1Gbps. This throughput compares
poorly in comparison to the approximately line rate performance
of the DPDK accelerated version.

Fig. 4. Physical Testbed DPDK vs LibPcap.

A second set of experiments focused on identifying the effect
of combining SR-IOV and DPDK on DPI performance when
deployed as a VM. A linear scaling network traffic load up to
10Gbps was used to stress test both the LibPCAP and SR-
IOV/DPDK versions of the DPI VM.

As shown in Figure 5 the SR-IOV/DPDK version achieves
approximately 81% of the physical DPDK testbed packet

transmission performance. The LibPCAP version displayed
saturation effect at 1Gbps with an 87.5% throughput reduction
in comparison to the DPDK version. The results also indicate
that DPDK’s performance in the virtualized scenario is
degraded, approximately 19% in comparison to the
corresponding physical test. This performance degradation can
be explained as DPDK runs on a virtualized environment, and
does not really bind a CPU core, so thread/CPU isolation is not
really performed.

The results indicate the promising performance of the
virtualized DPI solution, and a clear improvement when DPDK
is utilizing. The gap in performance between the physical and
the virtualized solution shows further optimization is required in
order for the VNF to achieve performance close to the
corresponding physical DPI solution i.e. line rate. Additionally,
it is clear that despite the use of SR-IOV the network kernel stack
remains the bottleneck in the packet processing path.

Fig. 5. Virtual Machine over SR-IOV Testbed DPDK vs LibPcap.

V. CONSIDERATIONS ON AUTOMATIC DEPLOYMENT

The previous section provides evidence that packet
acceleration technology solutions and their appropriate
integration can provide comparable performance for virtualized
instantiations of real physical equipment running network
functions (e.g. middle boxes). However, current virtualized
infrastructure environments for hosting VNFs pose a number of
management and configuration challenges. . For example with
OpenStack which has established itself as the de-facto open
source solution for the implementation and management of
cloud infrastructures, significant manual configuration is
required in order to create the required service chain links
between VNFs correctly and in a performant manner.

However, assuming that all the pre and post configurations
considerations have been addressed, the VNF implementation
should not be agnostic to the hosting platform capabilities.
Essentially, features such as DPDK need to be considered
carefully during the development of a VNF as well during
testing before deployment in a real world environment.
Additionally efforts to enhance the platform awareness of
OpenStack and other cloud frameworks are gaining momentum.
Increased platform awareness will support appropriate and
automated mapping of VNFs to the most appropriate compute
nodes that have required platform features.

Due to DPDK’s mode of operation within a VM, or on bare
metal, scaling mechanisms that depend on CPU usage
monitoring are incapable of triggering correct decisions. This is
due to the fact that when DPDK is used in a VNF, utilization for
a CPU core reaches the cap of 100% regardless of the traffic load
on the network interface (virtual or not). Additionally, when
DPDK is used the NIC is no longer recognized by the Linux
kernel stack. Therefore, the NIC has no TCP/IP stack, as the
kernel is bypassed. Also, a DPDK-enabled NIC cannot respond
to ICMP requests, and is therefore not discoverable from a Layer
3 network perspective. This adds some additional overhead to
the development of a DPDK-enabled VNF. These are acceptable
drawbacks in order to achieve significantly improved
performance, however auto-scaling mechanisms inherent in the
OpenStack framework or even manual ones will fail to scale
correctly. The solution is to use VNF specific monitoring
information, internal to the VNF and to create new rules and
methods for scaling the VNF when required.

Based on the previous considerations appropriate selection
of data-path acceleration features for VNFs is a trade-off with
respect to infrastructure and management flexibility. This
selection affects various actors to varying extents in the NFV
chain. In summary:

 The Function Developer

o VNF code development (code should be factored
appropriately to support DPDK). This requirement has
limited risk as DPDK offers a large library of methods in
order to serve integration and porting of a number of
network functions.

o VNF development environment: consideration of
enhanced platform features during the development
process can be challenging due to the heterogeneity of the
operational environments where the VNF will run.

 The Infrastructure Provider

o Vendor lock-in and cost. Procurement of equipment that
provide the enhanced capabilities. For example VNFs
which require specialized PCIe co-processing cards (e.g.
FPGAs) to provide specific packet processing capabilities
can potentially result in a degree of vendor dependency.
However, as the cloud ecosystem is primarily based around
technology standards vendor lock-in is less of an issue in
comparison to other technology areas.

o Provision of platform information to an Orchestrator, in
order to achieve the best mapping of application types to
resource allocation among an NFVI-Point of Presence
(PoP) compute nodes.

 The Service Provider

o Achieving support at an Orchestration level of the
enhanced platform features (i.e. infrastructure repository,
service mapping modules) in order to map VNF required
resources and capabilities to the underlying infrastructure.

VI. CONCLUSIONS AND FUTURE WORK

A virtualized DPI which supports high-speed network packet
processing has been described. The VNF in various
instantiations has been benchmarked to evaluate its
performance. The DPI VNF was implemented both using
LibPCAP and Intel’s DPDK framework. The SR-IOV
framework was also used, in order to maximize packet
throughput in a virtualized environment. Additionally, various
considerations and discussions have been presented regarding
the automatic deployment of enhanced VNFs in cloud
environments. Various limitations and development restraints
have been described and analyzed. The results of the
performance evaluation results showed that with SR-IOV and
DPDK a significantly higher performance can be achieved
compared to packet processing with the Linux kernel network
stack. Additional work is required to close the remaining gap
with the SR-IOV/DPDK enabled version of the DPI and 10Gbps
line rate performance. The next steps in this work will focus on
NUMA and core pinning and optimization of huge page sizes in
an effort to achieve near line rate performance for the DPI.

ACKNOWLEDGMENT

This work was undertaken under the Information
Communication Technologies, EU FP7 T-NOVA project, which
is partially funded by the European Commission under the grant
619520.

REFERENCES

[1] SR-IOV. PCI Special Interest Group, http://www.pcisig.com/home

[2] DPDK.org. (2015). DPDK: Data Plane Development Kit. Available:
http://dpdk.org/

[3] K. Salah, A. Qahtan, “Implementation and experimental performance
evaluation of a hybrid interrupt-handling scheme,” Computer
Communications, vol..32 no..1, pp.179-188, January, 2009

[4] Wind River, “Wind River Content Inspection Engine” on-line:
http://www.windriver.com/products/product-overviews/PO_Wind-
River-Content-Inspection-Engine.pdf

[5] IPOQUE, “Protocol and Application Classification with Metadata
Extraction”, on-line: http://www.ipoque.com/en/products/pace

[6] http://www.qosmos.com

[7] L. Deri,,M.Martinelli, T. Bujlow, A. Cardigliano, “nDPI: Open-Source
High-Speed Deep Packet Inspection”, International Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 617-
622, 4-8th Aug. 2014.

[8] T. Bujlow, V. Carela-Español, P. Barlet-Ros, (2014). Extended
Independent Comparison of Popular Deep Packet Inspection (DPI) Tools
for Traffic Classification. Universitat Politècnica de Catalunya.

[9] https://www.hastexo.com/system/files/neutron_packet_flows-notes-
handout.pdf

[10] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in USENIX
Annual Technical Conference, April 2012

[11] “PF_RING ZC,” http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-
copy/,.

[12] PktGen, Pktgen version 2.7.7 using DPDK-1.7.1, available
https://github.com/Pktgen/Pktgen-DPDK/

http://www.pcisig.com/home
http://dpdk.org/
http://www.windriver.com/products/product-overviews/PO_Wind-River-Content-Inspection-Engine.pdf
http://www.windriver.com/products/product-overviews/PO_Wind-River-Content-Inspection-Engine.pdf
http://www.qosmos.com/
https://www.hastexo.com/system/files/neutron_packet_flows-notes-handout.pdf
https://www.hastexo.com/system/files/neutron_packet_flows-notes-handout.pdf

