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Abstract— The design of the 6G system will be based on a 

user-centric paradigm, enabling users to be involved in the 

creation and the management of network services and also 

providing them with a highly customized network experience. 

This paper proposes a realization of this paradigm by proposing 

a core network redesign from "Network Function-focus" to 

"User-focus" in conjunction with an AI-assisted approach that 

self-organises the network according to the user-requirements. A 

proof of concept implementation is presented based on both 

simulated and physical deployments, that demonstrate an 

optimal User Plane Function (UPF) placement taking into 

consideration user's preferences, proving the validity of the 

proposed approach.  
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I. INTRODUCTION 

Today mobile communication networks follow an operator-
centric approach, utilizing monolithic network functions (NFs), 
such as access management functions (AMFs) and user plane 
functions (UPFs) in 5G, which are expected to serve a large 
number of end users at the same time. The 5G core network is 
currently built using the per-network function paradigm. As a 
result, some monolithic network functions—such as AMF and 
the session management function (SMF) in 5G—serve a high 
number of users/UEs, while performing extremely particular 
tasks. So, it is acceptable to assume that a centralized 
architecture is a natural outcome of the NF-centric design. 

From a functional standpoint, the current operator-centric 
and function-centric core network architecture controls each 
UE's or end user's state by maintaining consistent states across 
various network functions. This results in complex signaling 
message exchange, which may limit how much network 
performance may be enhanced (e.g. latency), as well as create 
more potential areas of attack. Monolithic network services 
(both physical and virtual) could become significant bottleneck 
sources as the number of linked devices/users rises.  

One might argue that the currently supported "per-user" 
slicing mechanisms of the existing NF-centric 5G core could 
accomplish this user-centric vision of 6G [1]. However, this is 
not feasible, since the existing slicing techniques of the 5G 
system, is built on the "NF-focused" fundamental underlying 
architecture, where each user may feel like having his/her own 
dedicated network services, but in reality, some centrally 
located monolithic NFs serve multiple users and UEs creating 
this user-centricity “illusion”, while in practice scaling and 
performance issues remain. 

In order to overcome these obstacles, network services need 
to be recentered on users, following a user-centric approach, 
the distinguishing characteristic of the 6G architecture, 
enabling user-definition, user-configuration, and user-control 
[2]. The visioned user-centric architecture in 6G alters how 
users, network services, and apps communicate, having an 
impact on the provided mobility management. With a shared 
context and a modular design, the per-user network will 
minimize the overwhelming message exchange between 
conventional network functions, resolving in this way the 
performance limitations of an NF-centric network, while at the 
same time will allow the per-user NF-placement based on the 
performance requirements of each user. 

Following this architectural evolution in 6G, the necessity 
for advanced user-centric placement and deployment of the NF 
has been raised. Considering that various distributed 
virtualization infrastructures have become available, spanning 
from edge to central cloud, the various placement options have 
a direct impact to the Quality of Experience (QoE) and Quality 
of Service (QoS) levels that are delivered at the user.  

In order to achieve the optimal NF placement and 
deployment based on the user and/or service requirements, the 
use of Artificial Intelligence (AI) techniques has been 
introduced, which allow to the 6G network not only to self-
configure its operation based on the user-expectations, but also 
to predict how a specific session is going to be evolved and 
respectively to be adapted accordingly [3]. By exploiting data 
that are provided by the core network 3GPP APIs, such as 
NEF, NWDAF [4], an AI model can be tightly integrated with 
the core network and be used as a cognitive AI coordinator 
deciding for each user the optimal NF placement and 
deployment, realizing a user-centric 6G service provision.    

This paper describes the core network evolution from a NF-
centric to a user-centric design, which together with a cognitive 
AI coordinator, realizes a novel architecture for user-centric 6G 
network. The proposed approach goes beyond the current state-
of-the-art, because it does not simply rely on triggering the  
optimal NF placement based on some QoS-degradation 
threshold [5], but it exploits on the openness of the core 
network [6] in order to predict the optimal placement, based on 
both spatial and temporal user-data.   

The value of the proposed intent-based 6G architecture is 
validated with an emulated mobility scenario, which confirms 
the advances of the proposed user-centric approach on the 
optimal UPF-placement based on the user context.  

The rest of the paper is organized as follows: Section II 
introduces an architectural evolution of the core network, 



responding to the requirements set by the user/human-centric 
6G vision. Section III describes the cognitive AI layer capable 
of taking decisions and providing reasoning on the user-centric 
instantiations of the core network. Section IV provides an 
experimental validation of the proposed user-centric 6G 
network, based on a cloud native implementation of the core 
network and the agility of the cognitive AI coordination. 
Section V provides future directions of the proposed approach 
as a technology enabler for trustworthiness provision in 6G. 
Section VI concludes the paper.  

II. USER-CENTRIC EVOLUTION OF THE CORE NETWORK  

In order to offer users a highly personalized network 
environment, as ITU FG NET-2030 envisions, a user-centric 
concept will be used to build the 6G system architecture, 
allowing users to participate in network service development 
and operation. Architectural redesign of the core network is 
required, following the paradigm shift from “Network 
Function-focus” to “user-focus”, allowing users to participate 
in network service creation and operation, while also giving 
users full control over data ownership.  

 

Fig. 1. Evolution of the current function-centric 5G core towards a user-

centric evolution of the 6G core 

To achieve this design, the network architecture should be 
segmented into user service nodes (USN) and network service 
nodes (NSN), and each user will receive a full instance of the 
6G system properly distributed over the continuum based on 
her/his service requirements and level of trust. For instance, to 
satisfy a variety of service needs in the 6G era, USN will be 
composed of end-user-level network policies and tailored 
services. As a result, it may help develop user profiling as a 
representation of the physical world [7]. 

 

Fig. 2. The User-centric evolution of the core network vs. the current NF-

centric approach.  

In the envisioned user-centric evolution of the 6G core, 
each user will have a separate network that consolidates all 
necessary tasks for service delivery thanks to the user-centric 
architecture. According to this design approach, the User-
Centric Network (UCN) is in charge of managing mobility, 
policies, sessions, and personal data. The much lower 

exchanged signals and resulting decreased latency are one of 
UCN's selling advantages. Thus, the proposed 6G Beyond 
Service Based Architecture (B-SBA) should allow the 
deployment of NSN components in one location, while 
aggregating multiple instances of USN in different locations 
but as part of the same communication platform. The B-SBA 
would allow the creation of network slices tailored for the users 
where the resources might be distributed or provided by 
different network providers. 

III. OPENESS & AI AUTOMATION OF THE USER-CENTRIC 6G 

The complexity imposed on the management and 
orchestration framework in user-centric 6G networks over the 
continuum requires evolving the orchestration concept through 
the massive integration of native AI as part of a distributed 
data-driven network architecture. Towards this the openness 
and the data exposure foreseen in B5G and 6G networks is 
acting as an enabler towards the envisioned AI-automation. 

A. Openess and Data Exposure as enablers of AI-automation 

The exposing of APIs, such as 3GPP TS 29.522 NEF/ 
3GPP TS 33.521 NWDAF/ 3GPP 33.122 CAPIF from the 
NSN plane (i.e. network core and edge) allows to third party 
applications of the USN plane (i.e. service/application 
provisioning level) to integrate with the core network [8]. 
3GPP SA6's work on vertical application enablers (VAEs) has 
emerged, with the goal of extending the NWDAF analytics 
APIs, so that decision and prediction AI models can be fed 
with data in order to support zero-touch management of the 
user-centric network.  

Therefore, 6G will take network automation to an 
unprecedented level. More specifically, this tight integration 
between AI and 6G system (NSN and USN exposed data and 
APIs) will support the agile realizing of the user-centric 
provision. AI will transform network management into a 
cognitive process through which the network can self-adapt 
and self-react to changing conditions with minimal manual 
intervention (zero-touch). For example, Intelligent predictive 
orchestration will help to reduce OPEX, while reaching the 
relevant 6G KPIs/KVIs (i.e., optimal use of resources, decrease 
of energy consumption, service assurance) depending on the 
user preferences and context [9].  

B. Cognitive AI system for user-centric 6G provision 

This paper proposes a cognitive system that specializes in 
autonomous service and network operation by combining well-
known AI technologies inside a flexible framework. The 
cognitive layer acts as an interface between tenants/users/3rd 
party apps and the network/environment via the 6G service 
exposure provider interface.  

Such a cognitive coordination system consists of three 
major components: a knowledge base, a reasoning engine, and 
an agent architecture: 

- The knowledge base includes an ontology of intents as 
well as domain-specific knowledge, such as the current 
state of the system.  

- The domain-independent reasoning engine will use the 
knowledge graph as the primary coordinator function 
for locating actions, assessing their impact, and 
ordering their execution in order to realise the intent 



which was requested by the tenant/user and/or third-
party application.  

- Finally, the agent design allows for the use of an 
unlimited number of models and services. The AI 
agents will incorporate machine learning models or 
rule-based policies, as well as providing services 
necessary in the cognitive reasoning process. For 
example, a machine learning model that can propose α 
mesh orchestration/configuration that improves 
reliability. This model is registered as an agent, which 
means as a "proposer" at the cognitive level, for 
configuration activities. Because of the discrete life 
cycle, the model may be replaced with an improved 
version as soon as it becomes available, regardless of 
the cognitive layer release cycles. Another example 
could be an agent assuming the role of "observer" that 
would monitor data sources and maintain the state's 
knowledge up to date. 

 

 

Fig. 3. The proposed Cognitive AI system for user-centric 6G provision 

Smooth communication between the reasoning engine and 
knowledge base is essential for the cognitive coordinator to 
function properly. The intent-driven reasoning engine 
continually runs a process that looks for ways to take actions to 
bridge the gap between the desired user-centric state and the 
currently observed state. It gathers suggestions, receives 
forecasts of each proposal's impact, weighs benefit against risk 
and certainty, prioritizes its course of action, and implements 
its judgments. Every stage of the procedure makes extensive 
use of specialized agents. The ongoing cognitive process would 
continually seek activities for further optimization even in the 
absence of explicit problems. It may, for instance, aim to use 
less resources to provide the same services.  

The proposed cognitive coordinator achieves a high level of 
dynamic adaptation to new contexts through its reasoning-
based core mechanism. This stands in sharp contrast to systems 
that have been implemented using set workflows and rule-
based policies, where every supported scenario requires 
consideration at the time of design through appropriate 
decision tree branches and varying rules. However, existing 
rule-based policies can still be implemented as agents on the 
cognitive coordinator and deployed there. This creates a 

method for upgrading old automation, adding AI-based models 
incrementally. 

C. Proposed User-centric architecture of 6G Networks 

The user-centric redesign of the core network will be driven 
by the distributed edge-cloud continuum and the openness of 
the 6G system, following the paradigm of the 5G core 
openness and its exposure capabilities with standardised 3GPP 
APIs, such as CAPIF/NEF, as well as the Network Apps 
paradigm driven by many European research projects and 
initiatives. 

 

 

Fig. 4. Conceptual architecture of User-Centric 6G Core Network 

deployment with Cognitive AI Coordination over the Edge-Cloud Continuum  

As Fig. 4 depicts, the cloud continuum in 6G will allow the 
realisation of the USN and NSN services in a distributed and 
adapted way closer to users, tenants, applications, data sources, 
and regulated processes. Knowledge of the continuum 
capabilities and of the user-context via the 3GPP APIs and 
ETSI APIs, can be used to optimize NSN and USN deployment 
and performance per user (i.e. user-centric approach), including 
aspects of security and robustness.  

Another key benefit of the envisioned user-centric redesign 
of the distributed 6G core architecture is the ease with which 
NFs can be placed, subsequently scaled, and moved between 
the clouds of the continuum (i.e. far edge, near edge, central 
cloud on which the 6G core is realised), and the efficiency with 
which they can be executed depending on each user’s 
requirements and preferences.  

Similarly, the openness of the 6G system will enable the 
development of novel and innovative USN and NSN CNFs by 
third parties, creating even higher impact in the realisation of 
diverse use-cases with distributed intelligence.  

IV. PROOF OF CONCEPT IMPLEMENTATION OF THE 

PROPOSED AI-ASSISTED USER-CENTRIC 6G NETWORK  

For validating the proposed user-centric AI-enabled 6G 
architecture, this paper provides an experimental 
implementation, which interfaces an AI agent in the 6G core 
and consumes data from the 3GPP NEF API concerning the 
location of the user in order to identify usage patterns.  

More specifically, for the experimental part of this paper a 
mobility scenario is considered where the location of a user in 
reported via the NEF API to the AI agent of the user-centric 6G 
network. Given that the user is requiring when is located at the 
work premises during the working hours to have very low 
latency access network (potentially because this allows to 
him/her to offload some computing tasks at the edge of the 
network), the proposed user-centric network performs the 
necessary AI analysis in order to predict the location of the user 



and respectively to place and deploy its functions in that way 
that low latency is reassured. For the experimental needs of the 
paper, the optimal placement and deployment of the UPF 
function in close proximity to the specific user is considered, 
allowing a local break-out and the low latency provision to that 
user and therefore validating the agility of the proposed user-
centric and AI-driven 6G network. The proposed architecture 
allows users to have their own networks, while avoiding the 
"one-size-fits-all" philosophy in order to provide personalized 
services. 

A. Scenario Description and Dataset Creation 

For performing the experimental validation of the proposed 
user-centric network, a mobility scenario is simulated by using 
the NEF Simulator [10], which is an open-source software 
implementation to conduct core network simulations. More 
specifically, a map is provided in the GUI of the simulator 
where moving users and cells coverage can be placed in order 
to formulate a specific scenario and topology, as depicted in 
Figure 5. This user-friendly interface allows for the creation 
and storage (i.e., JSON or CSV format) of multiple scenarios 
across the map, serving as a valuable tool for generating the 
simulated datasets of the 3GPP APIs, such as NEF, addressing 
the critical data scarcity challenge for applying AI algorithms 
to B5G/6G networks. The produced simulated dataset produces 
GPS coordinates (i.e., latitude and longitude) of the mobile 
user alongside a timestamp. 

 

 

Fig. 5. The GUI of the NEF Simulator, depicting the scenarion under study 

In this paper, we simulate a mobility scenario, where a user 
is moving across four distinct phases: Phase 1: routes from 
home to work, Phase 2: working hours spent at employer 
premises, Phase 3: routes from work back to home and Phase 
4: random routes outside during no-working hours. The 
requirement from the user is the provision of low latency when 
he/she is located at the work, while this requirement is not 
valid when he/she is located at any other place.  

 In order for the simulation to be realistic, the duration of 
each simulation varies from 7 to 10 hours, while multiple days 
and routes were simulated. The generated dataset stored in a 
csv file and afterwards is processed by pattern extraction 
framework and the prediction AI model.  

B. Pattern Extraction Framework 

The dataset that was produced for the above-mentioned 
scenario includes the GPS coordinates along with their 
respective timestamps. The intention of this work is to extract 

possible routines of the user in order to be able to predict 
his/her movement, and by extend to identify the optimal place 
for the UPF deployment, with the aim to achieve a better 
quality of experience for the user. 

The dataset includes both spatial (latitude, longitude) and 
temporal (timestamp) information of the user’s movement. The 
developed framework is trying to exploit these two different 
dimensions and combine both these aspects in order to reach a 
better result. 

Clustering is an unsupervised learning technique which 
discovers inherent structure within a dataset and enables the 
identification of patterns present in the data by grouping similar 
data points together into distinct clusters. When dealing with 
GPS coordinates, the spatial distribution of data along with the 
density variations are important parameters that should be 
taken into consideration in order to choose the appropriate 
clustering algorithm. 

The Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) was chosen to perform the clustering. 
DBSCAN is a density-based clustering algorithm which groups 
together data points that are closely packed together. That 
attribute is particularly useful as far as spatial data are 
concerned because it enables the identification of clusters 
which have arbitrary shape. For the temporal data, assuming 
that timestamps in close proximity represent continuous 
movement with high probability, DBSCAN can also group the 
timestamps into different segments based on the density. 

The results for the clustering depending on GPS 
coordinates are depicted in Fig. 6. Two different clusters were 
identified. The first cluster (red circles) includes the movement 
of the user i) from home to work; ii) activity during work; and 
iii) returning from work to home, while the second cluster 
(green circles) contains the random movement after the 
working hours. 

 

 

Fig. 6. DBSCAN clustering results on spatial data (2 clusters) 

For the clustering depending on the temporal dimension, a 
preprocess of the data was deemed necessary. Initially the 
timestamps were converted into Unix timestamps and then they 
were standardised (removing the mean and scaling to unit 
variance). The number of clusters that were identified was 8. 
The first cluster contains the movement from home to work. 
Clusters 2-6 correspond to the activity during work while 
cluster 7 and 8 include the return from work to home and the 
random movement after the working hours respectively. The 
outcome of the temporal analysis is presented in Fig. 7. 



 

Fig. 7. DBSCAN clustering results on temporal data (8 clusters) 

The parameters used for both spatial and temporal 
clustering are presented in Table I. 

TABLE I.  CLUSTERING PARAMETERS AND RESULTS 

Clustering 

Dimension 

DBSCAN parameters Number of 

Clusters eps min_samples 

Spatial 0.0002 3 2 

Temporal 0.05 5 8 

 

C. Placement Decision and Results  

The prediction of a person’s movement is a very 
challenging task due to several factors. Human behaviour is 
highly complex, and it can be influenced by various factors 
such as environmental conditions, personal preferences, 
random events, etc. In this work, we try to exploit some 
temporal dynamics (e.g. daily routine) along with some 
contextual information (e.g. working hours) in order to predict 
the future location of the user. 

When the user starts moving, the location along with the 
timestamp are fed to an AI agent, which classifies them to the 
respective spatial and temporal clusters that we have identified 
previously. The results from the two classification tasks are 
combined in order to predict, with higher probability, the path 
of the user. During user’s movement, each time new data for 
his/her location is produced, they undergo the same procedure. 
The new results are then compared with the current path 
prediction leading to an increase, or a decrease, of the 
probability that the forecasted path is the correct one.  

Knowing the trajectory of the user, the problem of the 
placement of the UPF depends only on the KPI/KVI that we 
want to optimise (in our scenario is latency/QoE). Another AI 
agent, using the spatial information from the extracted 
forecasted path, identifies the optimal placement (in terms of 
latency) for the cloud native UPF and proposes it to the 
reasoning engine. This proximity minimizes the latency and 
facilitates service delivery that meets applications’ strict 
performance requirements and for that reason the reasoning 
engine decides to accept the AI agent’s proposal and orders its 
execution.  

For evaluation purposes, we consider two possible cloud 
locations that the UPF can be placed, one (i.e. the edge cloud) 
within the working premises of the user (i.e. clusters 2-6 of 
temporal clustering dimension) and another one (i.e. the central 

cloud) located in a central/remote location of the area that the 
specific user is moving.  

Based on the identified clusters, the prediction of the user’s 
trajectory and the user’s intent, the AI coordination layer 
decides what is the optimal UPF placement for the specific user 
in order to reassure that the service provision will continue to 
meet the low latency requirements.  

Considering Round Trip Time in msec to be the time that 
the packet takes to travel from the mobile user to the 
application and back, we performed initially some baseline 
measurements in order to assess the Round-Trip Time (RTT) 
when the UPF has been placed at the edge or at the central 
cloud. For this reason a containerized implementation of the 
Open5GS core network was used, which has been properly 
configured to support dynamic migration of the UPF function 
between two placement options: i) The UPF to be deployed at a 
central cloud away from the working space of the user (in our 
case the working space is the lab), or ii) The UPF to be 
deployed locally at the edge cloud (within the lab/work area of 
the user).    

Figure 8 shows the two RTT assessments for these two 
UPF placements, where a significant performance deviation in 
terms of latency is observed. 

 

 

Fig. 8. RTT of the two UPF placements at the edge and the central cloud 

Exploiting now the different granularity on the identified 
number of clusters of the two clustering methods (i.e. spatial 
and temporal), we apply the deployment decision algorithm 
once considering the spatial clustering dimension and 
afterwards considering the combined one. 

As Fig. 9 depicts, in the case of the spatial clustering 
dimension, the UPF placement is decided to be at the edge 
cloud for the whole cluster #1 (i.e. the movement of the user: i) 
from home to work; ii) activity during work; and iii) returning 
from work to home), which results to over provision of the 
edge, since it includes also routes outside of the work premises 
that the UPF should not have been placed at the edge.  

In the case of combined clustering dimension, higher 
granularity is achieved and the UPF placement at the edge 
cloud is performed only for the predicted clusters 2-6, which 
actually correspond to the routes that the user is located within 
the working area and the optimal user-centric core network 
provision is achieved. 



 

Fig. 9. UPF placement based on combined clustering 

Therefore, it is deduced that the use of the 3GPP APIs as 
data source for feeding an AI agent that has been tightly 
integrated with the core for performing cognitive coordination 
is efficient and successfully manages to provide a user-centric 
core network placement according to the user’s requirements.  

V. FUTURE DIRECTIONS AND CHALLENGES 

Currently the experimental validation of the proposed user-
centric 6G network architecture relies on a simulated mobility 
scenario and not actually generated UE data. The authors are 
planning to expand the validation activities of the proposed 
user-centric 6G network with AI automation to a physical 
experimentation testbed by collecting real user-data and 
applying the AI-automation in the UPF selection in large scale 
field trials. Moreover, different decision models are planned to 
be used for benchmarking their performance and selecting the 
most optimal and efficient model for this task. 

VI. CONCLUSIONS 

This paper has presented a novel user-centric 6G network 
architecture that integrates an AI coordination layer in order to 
automatically decide the appropriate placement for the NFs 
according to the user requirements. The proposed architecture 
has been validated using simulated/synthetic data to train the 
AI model for NFs/UPF placement at the optimal location for 
low latency provision of a containerized Open5GS core 
network. The experimental validation showed that the proposed 
AI-assisted user-centric network implementation can 
successfully provide the requested low latency access to the 
user when she/he is located within a specific area (i.e. 
employer premises). 
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