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Abstract. A reduced-reference video quality assessment (VQA) method was proposed by using structural sim-
ilarity (SSIM) index as a tool to extract features from both the original and the target video sequences, using a
reference video pattern. The method is suitable for monitoring the video quality in real time and across the ser-
vice provision chain. The performance of the proposed method was evaluated using a large experimental set of
reference and nonreference video sequences and achieves an accuracy higher than 2.56% in comparison to
SSIM. Additionally, comparison to subjectively evaluated scores of Laboratory for Image and Video Engineering
video quality dataset, based on difference mean opinion scores, shows that the performance of the proposed
method is within the range of the full reference VQA methods. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
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1 Introduction
The thriving interest of consumers for video content has
brought the world closer to the universe of digital video pro-
vision than ever before. The recent market success of media
services such as internet protocol television and video on
demand through consumer electronic products, has created
a considerable increase of the network traffic, which has
caused the network operators to apply restriction policies,
creating a controversial issue on the network neutrality and
traffic differentiation.

This situation has created the need for more advanced
encoding techniques (e.g., H.265/HEVC) and adaptation
schemes1 which achieve higher compression ratios and pro-
vide agility to the adaptation of the media service,2 alleviat-
ing the network operators from the media-related network
traffic. Thus, during the service provision, the video stream
may be needed to be dynamically transcoded at different for-
mats/profiles (e.g., such as in the paradigm of mobile-edge
computing), resulting in adapted media services that dynami-
cally fit the current network conditions and the terminal
device specifications. However, this in-service transcoding
process, which today can be supported by the emerging soft-
ware-defined networking and network function virtualization
techniques,3 introduces to the media service a wide variety of
encoding impairments that degrade the deduced quality level
of the encoded media service. Thus, the quality degradation
of the media service, caused by the in-service transcoding
process, creates the need for defining flexible video quality
assessment (VQA) methods that will be able to evaluate the
quality with the same accuracy as the well claimed video
quality metrics [e.g., structural similarity (SSIM) index4].
These VQA methods would be able to assess the quality

not only during the initial coding process of the source sig-
nal, but also across the media service delivery path to the end
user, providing useful feedback both to the content provider
for service adaptation actions and to the network operator for
optimal traffic steering decisions.

To monitor the quality in real time and across the service
provision chain,5 it is necessary to use flexible VQA tools,
which are suitable for in-service integration, evaluating the
media service along its network delivery path.

Currently, the available VQA methods are divided into
two categories: the subjective and the objective ones. More
specifically, the subjective VQA methods6 are based upon
the opinion score of a group of viewers regarding the visual
degradation of an encoded video sequence compared to the
original uncompressed sequence, establishing them as the
primary choice for video quality evaluation tests in terms
of reliability, but also practically from a commercial perspec-
tive. The subjective video quality evaluation methods are
expensive and time-consuming mainly due to their demand-
ing setup within a controlled room/environment with sophis-
ticated apparatus, which leads to the fact that they cannot be
commercially exploited, especially within the service provi-
sion chain for monitoring purposes of the delivered video
service.

Correspondingly, the objective VQA techniques are
mathematical computational models that utilize various
image characteristics (e.g., luma and chroma),7–16 or other
image statistics (e.g., blockiness),17 to approximate as well
as possible the subjective test results in an efficient and
cost-effective way. The objective methods are categorized
into three groups determined by their approach and the met-
ric used for the quality assessment: the full reference (FR)
ones, the reduced reference (RR) ones, and the no-reference
(NR) ones.

The FR methods evaluate the video quality by comparing
the frames of the original video and the target video. The
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methods perform multiple channel decomposition of the
video signal, where the objective method is applied on
each channel, which feature a different weight factor accord-
ing to the characteristics of the human visual system (HVS),
using contrast sensitivity functions, channel decomposition,
error normalization, weighting, and finally Minkowski error
pooling for combining the error measurements into a single
perceived quality estimation.18 Also, in the bibliography, FR
methods for a single channel have been proposed where the
proposed objective metric is applied on the video signal,
without considering varying weight functions. Some FR
metrics that are based on the video structural distortion have
been proposed,19 among which is the widely known SSIM
index, which has a very wide range of applicability across
many different fields.20–22 All FR methods, including SSIM,
provide higher accuracy and credibility in comparison to the
rest of the categories (RR and NR), but in the evaluation
process, they require both the original and the encoded
video sequences at the same site, making them inappropriate
for integration in the service provision chain where the origi-
nal signal is not available at the end-user site.

The RR methods are able to evaluate the video quality
level based on metrics which use only some extracted struc-
tural features from the original signal.23,24 The concept of the
RR metrics was introduced by Refs. 7, 24, and 25, where the
RR metric was based upon the extraction of various spatial
and temporal features of the reference video, which are easily
exposed to distortions added by the standard video compres-
sion process. RR metrics can be roughly categorized into
three categories.

The first category includes all methods based upon
models of low-level statistical properties of the original natu-
ral image. An RR metric that belongs to this category is
described in Ref. 26, which provides a condensed amount
of RR information obtained by the comparison of the mar-
ginal probability distribution of wavelet coefficients in differ-
ent wavelet subbands with the probability density function of
the wavelet coefficients of the decoded signal, while using
the Kullback–Leiber divergence as a distance between
distributions.

The second category of RR metrics includes methods that
capture visual distortions, to quantify the decoded signal’s
quality.27–30 However, this type of metrics only performs
well, when there is sufficient knowledge about the degrada-
tion process that the signal underwent. It is not efficient to
apply these techniques to general cases whose distortion has
not been previously assumed.

The third and the last categories of RR metrics are based
upon models of the viewer’s perception, e.g., the HVS.31–34

These models exploit and apply different psychological and
psychological vision studies on the end users in an attempt to
imitate the behavior of subjective test groups.

RR methods are more flexible for in-service integration
since they require only partial information of the original
video signal, but they have reduced accuracy and credibility
in comparison to the FR metrics.

Finally, the NR methods evaluate the video quality on the
basis of processing the frames of the target video alone. As
they do not require any information from the original video
sequence, they can be easily integrated within the service
provision chain. However, their performance is limited to
specific visual artifacts (e.g., tiling), restricting their range

of applicability to special cases only. Thus, from the family
of the objective methods, the RR and the NR metrics are
more suitable for in-service integration, but they suffer
from limited efficiency in comparison to the FRs, which
offer high accuracy, but applicability limitations, since they
require the original video sequence for assessing the video
quality.

It is evident that RR methods require an additional com-
munication channel within the network architecture to trans-
mit the extracted features from the video provider site to the
end-user terminals. It is obvious that the required bandwidth
depends on the specific RR method. A bandwidth in the
range of 1 to 150 kbps is usually required, depending on the
RR method and the feature extraction type.23,35 However, the
method described in Ref. 35, which requires under 1-kbps
bandwidth, performs very poorly in terms of absolute differ-
ence compared to subjective tests.

An alternative technique is that the extracted features (or
in general the reference information) will be encapsulated
inside the forward link, along with the video transmission.
The more features that are extracted and transmitted to
the end user, the more accurate is the objective video quality.
However, more features require higher bandwidth of the
communication network. So in RR methods, there is a
trade-off between the accuracy of the VQA and the con-
straints in the network bandwidth.

In this paper, an RR method is proposed that is suitable
for in-service use. The features extracted from both the origi-
nal and the target video frames are based on the evaluation of
the SSIM index. In this respect, the SSIM index is calculated
for each frame of the original video using as reference a static
white pattern, i.e., a video whose frames are all white. The
SSIM index for each frame is transmitted to the end-user site.
At the end-user terminal, the SSIM index is calculated
between each frame of the received (target) video and the
same static white pattern. The proposed RR metric is the
ratio of the two SSIM indices. Through experimental mea-
surements, it is shown that the proposed metric has a value
very close to the SSIM index as calculated from the compari-
son of the original and the target video frames. The accuracy
of the proposed metric as compared to SSIM depends on the
video degradation, i.e., the higher the degradation, the worse
is the accuracy. Experimental measurements show that for an
acceptable video quality level,36,37 the mean absolute per-
centage deviation (MAPD) of the proposed method is lower
than 2.56%.

Another advantage of the proposed method is the low bit
rate reference information signal that needs to be sent to the
end user, which ranges between 400 and 600 bps.

The rest of the paper is organized as follows: Sec. 2
describes the use of SSIM as a feature extraction method
from both the original and the target videos and introduces
the metric SSIM RR (SRR), which can be directly compared
to the original SSIM index. Section 3 presents a qualitative
interpretation of the proposed video quality metric SRR. In
Sec. 4, the performance evaluation of the proposed method is
presented and analyzed, and finally Sec. 5 concludes the
paper.

2 Feature Extraction Using Structural Similarity
Among the most reliable objective evaluation metrics is the
SSIM, which measures the SSIM between two image
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sequences, exploiting the general principle that the main
function of the HVS is the extraction of structural informa-
tion from the viewing field. If x and y are two video signals,
then SSIM is defined as

EQ-TARGET;temp:intralink-;e001;63;708SSIMðx; yÞ ¼ ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y þ C1Þðc2x þ σ2y þ C2Þ

; (1)

where μx and μy are the mean of x and y, σx, σy, and σxy are
the variances of x, y and the covariance of x and y, respec-
tively. The constants C1 and C2 are defined as

EQ-TARGET;temp:intralink-;e002;63;629C1 ¼ ðK1LÞ2C2 ¼ ðK2LÞ2; (2)

where L is the dynamic pixel range and K1 ¼ 0.01 and
K2 ¼ 0.03, respectively.

In the typical SSIM index evaluation process, it is
assumed that both the original and the target video sequences
are available at the same site, as shown in Fig. 1. SSIMðx; yÞ
evaluation for every frame can be based on any software
implementation of Eq. (1), where x is the original video
sequence (VSo) in Fig. 1, y is the target video sequence
VSt, and SSIMot is their SSIMðx; yÞ index.

According to Ref. 4, where SSIM index is defined and
introduced, SSIM comprises three image characteristics
components: the luminance, the contrast, and the structure
comparison. Their combination results in the widely used
SSIM index. The three separate comparison components are

EQ-TARGET;temp:intralink-;e003;63;444lðx; yÞ ¼ 2ð1þ RÞ
1þ ð1þ RÞ2 þ C1

μ2x

; (3)

EQ-TARGET;temp:intralink-;e004;63;394cðx; yÞ ¼ 2σxσy þ C2

σ2x þ σ2y þ C2

; (4)

EQ-TARGET;temp:intralink-;e005;63;353sðx; yÞ ¼ σxy þ C3

σxσy þ C3

: (5)

The combination of Eqs. (3) luminance, (4) contrast, and (5)
structure comparisons results in the SSIM index equation

EQ-TARGET;temp:intralink-;e006;63;290SSIMðx; yÞ ¼ ½lðx; yÞ�a � ½cðx; yÞ�β � ½sðx; yÞ�γ: (6)

According to the SSIM index equation, the parameters α, β,
and γ adjust the relative importance of each of the three com-
ponents in the calculation of the SSIM, but for simplicity
reasons, the authors of Ref. 4 have selected the case that
α ¼ β ¼ γ ¼ 1, which results in the well-known expression
of the SSIM index. However, the decision that the three com-
ponents participate equally in the final calculation of SSIM
index is not sufficiently justified by the authors in Ref. 4 and
it seems that it is a decision reached only for simplicity
reasons.

This motivated us to further research the sensitivity analy-
sis of the SSIM accuracy under different α, β, and γ weights.
More specifically, considering the purpose of this paper is to
develop a flexible metric suitable for in-service applicability,
we notice that the parameter γ specifies the importance of the
SSIM between signals x and y, which is the most influential
factor for the FR requirement in the applicability of the
SSIM, since according to the following type, the σxy factor
needs to be calculated for the measurement of Eq. (5).

In the proposed method, in order to investigate the in-ser-
vice applicability of the SSIM [i.e., in in-service cases where
the calculation of Eq. (5) is not feasible due to the lack of the
reference signal], we research in this paper the case that
γ → 0, so the relevant importance of Eq. (5) in the SSIM
calculation is limited. Therefore, the requirement for the
reference signal to be available together with the encoded
signal for the estimation of Eq. (5) ceases to exist, allowing
the decomposition of the SSIM index exclusively for the
Eqs. (3) and (4) parameters, where no ex parameters exist
that require the existence of both the reference and the
encoded signal at the same place.

Based on this analysis, in the proposed method (see
Fig. 2), the SSIM index is used as a tool to extract features
from both the original and the target video sequences using a
reference video pattern. In this respect, an initial SSIMor

value is evaluated for every frame at the service provider

Fig. 1 Typical SSIM index evaluation with original and target video
sequences available at the same site.

Fig. 2 SRR evaluation method using a reference video pattern as
reference at both the service provider and end-user sites.

Journal of Electronic Imaging 043011-3 Jul∕Aug 2016 • Vol. 25(4)

Kourtis, Koumaras, and Liberal: Reduced-reference video quality assessment using a static video pattern

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 07/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



site, by comparing the VSo with a video reference pattern
(VSr), e.g., a video sequence of white video frames of the
same resolution and frame rate, which is artificially gener-
ated [later in this section, the authors test the primary colors
(i.e., white, black, red, green, and blue) as reference video
patterns and it is shown that the white video pattern performs
better than the others]. The evaluation of SSIMor can be
based on any software implementation of Eq. (1), where x
is VSo and y is VSr and refers to each frame. SSIMor can
be considered as a feature of each frame of the original
video and is sent to the end-user site by any means, i.e., either
through the same communication channel as the video, or
any other communication channel with a sufficient band-
width, or by embedding it inside the transport stream of
the video sequence. In any case, it is considered that the
SSIMor value is recovered at the end-user site.

Referring to Fig. 2, an SSIMtr value is evaluated at the
end-user site by comparing the received (target) video signal
(VSt) with a reference video pattern (VSr), which is identical
to the one used at the service provider site and is also arti-
ficially generated at the site. The evaluation of SSIMtr is
based on the same software implementation of Eq. (1)
which used at the transmitter site and refers to each frame
of the target video sequence. SSIMtr can be considered as
a feature of each frame of the target video.

The ratio of these two SSIM values can be considered as a
new metric based on SSIM, namely SRR, i.e.,

EQ-TARGET;temp:intralink-;e007;63;455SRR ¼ SSIMor∕SSIMtr: (7)

Comparing SRR with the SSIM index between the original
and the target video sequences, experimental results in Sec. 5
show that the SRR efficiently approximates the SSIM, with
an MAPD <2.56% and satisfactory correlation coefficient
values with subjective mean opinion scores (MOS).

Concerning the kind of reference video pattern, the appli-
cability of the SRR method was evaluated based on using the
primary colors (i.e., white, black, red, green, and blue) as
reference video patterns. The selected primary colors portray
a distinct RGB diversity, which is essential to demonstrate
and evaluate the behavior of the proposed method, maintain-
ing a simplicity in the implementation and representation of
the pattern.

In this framework, the proposed method was applied on
the experimental set of the 40 test signals, which are encoded
with H-264 at three distinct quantization parameters (QP)
values, specifically QP ¼ 12, 22, and 32, each time utilizing
a different primary color as a reference video pattern. The QP

value regulates how much spatial detail is maintained during
the encoding/compression process (modifying, respectively,
the quantization step). A low QP value denotes a low quan-
tization step, therefore, almost all the spatial detail of the
video is retained, while a high QP value corresponds to
high quantization step and the video spatial detail is aggre-
gated resulting in increased distortion and degradation of
video quality. For each color and QP value, the proposed
SRR method was applied and each time the MAPD value
in relevance to the SSIM was calculated.

The experimental results of the process are provided in
Table 1, where it is observed that among the primary colors,
the white video pattern provides a better performance across
different QP values, while the rest of the primary colors per-
form notably worse than the white. Therefore, considering its
better performance than the rest of the colors and its main
characteristic as the easiest representation with only one
luminance parameter, the white reference video pattern is
recommended for implementing the proposed SRR method
and it is selected for executing the experimental parts of
this paper.

Concerning the channel requirements and the overhead of
the proposed method, SSIMor is a number <1 and it can be
represented by 2 bytes per frame for an accuracy of four deci-
mal places (10−4). In this case, the required bit rate to be
transmitted to the end-user site is 400 bps per 25 frames∕s.
For an increased accuracy per frame of six decimal places
(10−6), 3 bytes are required, resulting in 600 bps for the
SSIMor. Even 600 bps is significantly lower than the
value of ∼1 to 150 kbps required for other RR methods,
as mentioned in Sec. 1.

3 Qualitative Interpretation of the Proposed Video
Quality Metric

In order to interpret the proposed quality metric and its rela-
tion to the SSIM index, we consider a video sequence which
is encoded at various QP values, resulting in different bit
rates and quality levels. The SSIM index between the origi-
nal and the target video sequence for each frame is denoted
as SSIMotðQPÞ, which is a descending function of QP. Given
that the maximum value of SSIMot is equal to 1, the SSIM
variation is an exponential function as shown in Ref. 38.
Therefore

EQ-TARGET;temp:intralink-;e008;326;279SSIMotðQPÞ ¼ e−α�QP; (8)

where α is a coefficient that depends on the content of the
video signal.38

Table 1 MAPD for 40 test signals with different reference video patterns.

Reference video pattern R G B QP:12 QP:22 QP:32

Black 0x00 0x00 0x00 0.011049 0.0303 0.099677

White 0xFF 0xFF 0xFF 0.007049 0.010328 0.032666

Red 0xFF 0x00 0x00 0.008156 0.013966 0.042319

Green 0x00 0xFF 0x00 0.009114 0.016522 0.047510

Blue 0x00 0x00 0xFF 0.006726 0.014751 0.044131
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The plot of SSIMotðQPÞ versus QP is shown in Fig. 3,
curve a. As QP increases, more and more information from
the original video frame is lost, i.e., the spatial information
(i.e., color and intensity of each pixel) of VSt is lost. In the
extreme case, where the information is completely lost, all
pixels are equal in color and density, i.e., the VSt is degraded
to a sequence of uniform frames, as for example a white
video pattern (similar to the used reference video pattern).
In this extreme case, the lowest value of SSIMotðQPÞ is
the SSIM index between the original video sequence and
the reference video pattern, which can be denoted as SSIMor.

The previous analysis refers to the comparison between
the original and the target video frames. If we consider the
comparison between the target video frames and the refer-
ence video (i.e., the white video pattern explained earlier),
the SSIMtrðQPÞ index versus QP will be an ascending
function.

This is because at low QPs the target frame is almost iden-
tical to the original and, therefore, will greatly differ from the
(white) reference video pattern, resulting in a low SSIMtr

value. Furthermore, as QP increases, the target frame will
gradually become similar to the reference white video pat-
tern, resulting in a higher value of SSIMtr. For very high
QP, the target frame is identical to the reference one and the
maximum SSIMtr is equal to 1.

Considering an exponential variation of SSIMtr (similar to
SSIMot), it is deduced that

EQ-TARGET;temp:intralink-;e009;63;455SSIMtrðQPÞ ¼ SSIMor � eα�QP: (9)

The plot of SSIMotðQPÞ versus QP is shown in Fig. 3,
curve b.

From Eqs. (8) and (9), it can be deduced that

EQ-TARGET;temp:intralink-;e010;63;391SSIMotðQPÞ�SSIMtrðQPÞ ¼ SSIMor →

SSIMot ¼ SSIMor∕SSIMtr:
(10)

Comparing Eqs. (7) and (10), it is evident that

EQ-TARGET;temp:intralink-;e011;63;329SRR ¼ SSIMot: (11)

That is, in the ideal case, the proposed SRR is equal to the
SSIM index. However, in real conditions, the SSIMtr varia-
tion differs from Eq. (9), because for high QP values the
degraded frame will not become identical to the white refer-
ence one. This is due to the fact that the maximum value of
SSIMtr in real conditions will not reach the ideal value of 1,

as is shown in the plot of SSIMtr in real conditions in curve c
of Fig. 3 (dotted line). This deviation will affect the accuracy
of Eq. (11), and SRR will differ from the SSIM index by an
amount that depends on the difference between curves b and
c of Fig. 3.

4 Performance Evaluation

4.1 Performance Comparison of Structural Similarity
Reduced Reference to Structural Similarity

The performance of the proposed method is evaluated by
comparing SRR with the original SSIM index (SSIMot)
for a large number of video frames. In this respect, a
wide range of video sets were selected, which include 40
video sequences of various length, resolution, and content.
The selected video sequences include 11 reference video
sequences,39 2 long-duration sequences (Bigbuckbunny and
Elephantsdream), and 27 nonreference video sequences
retrieved from movie trailers. The total number of unique
frames which were used for evaluating the proposed method
is 60,866.

The original uncompressed video sequences were
encoded at three QP values: 12, 22, and 32, which satisfac-
torily cover the achieved video quality range of the encoded/
compressed video signals. Higher QP values were not exam-
ined because they lead to unacceptable video quality.36

An initial qualitative comparison between SRR and SSIM
index is shown in Fig. 4, which shows the variation of SRR
and SSIM index for each frame of a video sequence
(Kristen&Sara) with QP ¼ 32. From Fig. 4, the qualitative
similarity of RSS and SSIM index is obvious.

For the quantitative measurement of the performance of
the proposed method, the MAPD for each frame i between
SRR and SSIM index is calculated. MAPD is a widely used
metric for measurement of the accuracy of a prediction
method, specifically in trend estimation such as the the pro-
posed method

EQ-TARGET;temp:intralink-;e012;326;346MAPD ¼ 1

n

Xn
i¼1

jSSIMi − PredictedSSIMij
SSIMi

; (12)

where SSIMi is the SSIM index per frame i and
PredictedSSIMt is the SRR value for the frame t, according
to Eq. (7).

Fig. 3 Variation of: (a) SSIMot, (b) ideal SSIMtr, and (c) real conditions
SSIMtr versus QP.

Fig. 4 Qualitative comparison of RSS and SSIM index applied on
Kristen&Sara video sequence with QP ¼ 32.
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Table 2 MAPD for SRR and SSIM index for a white video reference pattern.

Test signal Resolution Frames QP ¼ 12 QP ¼ 22 QP ¼ 32

Apocalypto1 352 × 288 990 0.003053 0.005581 0.033561

Apocalypto2 352 × 288 990 0.004793 0.005936 0.020171

Apocalypto3 352 × 288 990 0.005903 0.007334 0.021447

Apocalypto4 352 × 288 501 0.005136 0.009094 0.017331

Mission1 352 × 288 990 0.005578 0.007233 0.016888

Mission2 352 × 288 990 0.006228 0.006695 0.019181

Mission3 352 × 288 293 0.004423 0.005531 0.016902

Superman1 352 × 288 990 0.004448 0.006062 0.019283

Superman2 352 × 288 990 0.00459 0.0069 0.021657

Superman3 352 × 288 268 0.001328 0.003436 0.035995

Insideman1 352 × 288 990 0.003798 0.004191 0.019316

Insideman2 352 × 288 990 0.006988 0.008945 0.012651

Insideman3 352 × 288 990 0.00526 0.006288 0.012146

Insideman4 352 × 288 376 0.00125 0.001084 0.027495

Davinci1 352 × 288 990 0.0029 0.003661 0.014045

Davinci2 352 × 288 990 0.005846 0.007804 0.019533

Davinci3 352 × 288 990 0.005416 0.005909 0.012271

Davinci4 352 × 288 627 0.007838 0.009838 0.018827

Basic1 352 × 288 990 0.005603 0.006751 0.015259

Basic2 352 × 288 990 0.00652 0.009051 0.015006

Basic3 352 × 288 990 0.006734 0.00765 0.014208

Basic4 352 × 288 351 0.003842 0.004624 0.010905

16blocks1 352 × 288 990 0.004517 0.004992 0.017711

16block2 352 × 288 990 0.006962 0.006389 0.012574

16block3 352 × 288 990 0.005295 0.005044 0.01225

16block4 352 × 288 451 0.003401 0.00297 0.007796

Batman1 352 × 288 2659 0.010258 0.014053 0.042584

Batman2 352 × 288 913 0.00619 0.011052 0.070104

Bigbuckbunny 640 × 360 14315 0.01091 0.020527 0.039061

Elephantsdream 640 × 360 15691 0.008501 0.013748 0.040883

Basketballpass 416 × 240 501 0.011807 0.007371 0.022277
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Table 2 presents the MAPD for the experimental set of the
40 video sequences at the three QP values (i.e., 12, 22, and
32) and the mean value of MAPD for each QP.

Table 2 shows that the accuracy of the proposed method
ranges from 0.62% (QP ¼ 12) to 2.56% (QP ¼ 32), which
represents the worst case performance, showing that the pro-
posed SRR method maintains a satisfactory performance
across all the potential range of QP values, although better
accuracy is achieved at lower QP values. The comparison
between the correlation of QP and ground truth (i.e., MOS)
versus the correlation of SRR scores and ground truth pro-
vides the result of 28.65, showing the advantage and the bet-
ter performance of the proposed metric.

The experimental variation of MAPD versus QP is shown
in Fig. 5(a), where the trend line is the dashed line. For com-
parison reasons, the theoretical MAPD is also shown in
Fig. 5(b).

It is calculated from Eq. (12), where SSIMi equals
SSIMotðQPÞ, as calculated from Eq. (8). Also,
PredictedSSIMt equals SRR, i.e.,

EQ-TARGET;temp:intralink-;e013;63;265SRR ¼ SSIMorðQPÞ
SSIMtrðQPÞ

; (13)

where SSIMtrðQPÞ corresponds to curve c of Fig. 3, which
refers to an exemplary practical case.

The slopes of the two lines of Figs. 5(a) and 5(b) are the
same, which shows that the theoretically calculated SRR is
very close to the experimental results.

4.2 Performance Comparison of Structural Similarity
Reduced Reference to Subjective Difference
Mean Opinion Scores and Other Assessment
Methods

According to the video quality experts group research,40 in
order to obtain a linear relationship between an objective
assessment method score and its corresponding subjective
score, each metric score x is mapped to qðxÞ. The nonlinear
best-fitting logistic function qðxÞ is given as follows:

EQ-TARGET;temp:intralink-;e014;326;316qðxÞ ¼ β1

�
1

2
−

1

1þ exp½β2ðx − β3Þ�
�
þ β4χ þ β5: (14)

The parameters (β1, β2, β3, β4, and β5) are calculated
through minimizing the sum of squared differences among
the subjective and the mapped scores. To compare the per-
formance of a newly proposed SRR method with the existing

Table 2 (Continued).

Test signal Resolution Frames QP ¼ 12 QP ¼ 22 QP ¼ 32

Bqsquare 416 × 240 601 0.006849 0.028219 0.101372

Bubbles 416 × 240 501 0.005385 0.015653 0.069205

Basketballdrill 832 × 480 501 0.016819 0.00973 0.0052

Bqmall 832 × 480 601 0.008256 0.005319 0.009498

Racehorses 832 × 480 300 0.009953 0.00794 0.022274

Partyscene 832 × 480 501 0.005572 0.01613 0.075519

Stockholm 1280 × 720 604 0.000514 0.030779 0.047909

Kristen&Sara 1280 × 720 600 0.008666 0.006363 0.010176

Foupeople 1280 × 720 600 0.009949 0.001049 0.001995

Mean value 0.00618198 0.00867315 0.02556165

Fig. 5 Variation of MAPD versus QP: (a) experimental and (b) theoretical.
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ones, performance evaluation metrics are used, such as the
Pearson’s linear correlation coefficient (LCC), which is the
LCC between the predicted MOS and subjective MOS. LCC
is a measure of prediction accuracy of an objective assess-
ment metric, i.e., the capability of the metric to predict the
subjective scores with low error. The LCC can be calculated
using the below equation

EQ-TARGET;temp:intralink-;e015;63;675LCC ¼
PMd

i¼1ðqi − q̄Þðsi − s̄Þ
½PMd

i¼1 ðqi − q̄Þ2�12½PMd
i¼1 ðsi − s̄Þ2�12

; (15)

where si and qi are the subjective and the mapped scores for
the i’th frame of a video of sizeMd, respectively, and s̄ and q̄
are the means of the mapped and subjective scores, respec-
tively. A good objective assessment metric is expected to
have high LCC (close to 1) in contrast to MAPD, which
should have low values (i.e., close to 0), as shown in Sec. 4.1.

Moreover, the Spearman rank order correlation coeffi-
cient (SROCC), which measures the monotonicity of the pro-
posed method against subjective human scores, was also
applied. SROCC is a nonparametric measure of statistical
dependence between two variables, which assesses how
well the relationship between two variables can be described
using a monotonic function. If there are no repeated data val-
ues, a perfect Spearman correlation (equal to 1) occurs when
each of the variables is a perfect monotone function of the
other.

Therefore, in order to evaluate the performance of the
SRR method and derive the LCC, following the aforemen-
tioned methodology, the Laboratory for Image and Video
Engineering (LIVE) video quality dataset6,41 was used.
The LIVE video quality database (VQDB) uses 10 uncom-
pressed high-quality videos with a wide variety of content as
reference videos. A set of 150 distorted videos were created
from these reference videos (15 distorted videos per refer-
ence) using H.264-based compression. Then each degraded
video in the LIVE VQDB was assessed by 38 human sub-
jects in a single stimulus study with hidden reference
removal, where the subjects scored the video quality on a
continuous quality scale. The mean and variance of the dif-
ference mean opinion scores (DMOS) were obtained from
the subjective evaluations.

A scatter plot of proposed objective SRR scores versus
DMOS for all H.264 videos in the LIVE VQDB is shown
in Fig. 6 along with the best-fitting logistic function.

The SROCC and the LCC are computed between the
objective and the subjective scores. Table 3 shows the per-
formance of the proposed SRR model against other VQA
methods, both FR and RR, in terms of the SROCC and LCC.

According to Table 3, the accuracy of the proposed SRR
method is measured more accurately than the RRVQAmeth-
ods RR-LHS,42 J.246,33 and Yang’s RR VQA 43 both in
terms of LCC and monotonicity (SROCC), except for the
RR metric,35 which provides better results. Similarly, the
accuracy of the proposed SRR method is better than those
of the PSNR and VSNR FR VQA methods in terms of
LCC, while it is slightly lower than the performance of
VQM and SSIM index, as expected, due to the reduced refer-
ence nature of the proposed methodology. In terms of monot-
onicity (SROCC), the proposed method performs better than
the PSNR, but lower than the rest of the VQA methods, with-
out, however, significantly deviating from their perfor-
mance range.

5 Conclusions
This paper proposes an RR VQA method using SSIM index
as a tool to extract features from both the original and the
target video sequences, using a reference video pattern.
The method is suitable for monitoring the video quality in
real time and across the service provision chain. The perfor-
mance of the proposed method was evaluated using a large
experimental set of 40 reference and nonreference video
sequences, with spatial resolution ranging from common
intermediate format up to high definition, utilizing a static
white video as a relative reference pattern. The proposed
method maintains a satisfactory performance across all the
potential range of QP values, although better accuracy is
achieved at lower QP values. Moreover, comparison to sub-
jectively evaluated scores of LIVE video quality dataset
shows that the accuracy of the proposed method is better
than the average performance of RR VQA methods and is
within the performance range of the FR VQA methods.
Finally, another advantage of the proposed method is the
low bit rate reference information signal that must

Table 3 Comparison of the performance of VQA algorithms—LCC
and SROCC.

VQA method Type LCC SROCC

RR-LHS42 RR 0.4557 0.4082

J.24633 RR 0.4488 0.4157

Peak signal-to-noise ratio (PSNR) FR 0.5493 0.4585

Yang’s RR VQA43 RR 0.5654 0.5366

Visual signal-to-noise ratio (VSNR)44 FR 0.6216 0.6460

Proposed SRR method RR 0.6260 0.5862

Video quality metric (VQM)34 FR 0.6459 0.6520

SSIM4 FR 0.6656 0.6514

RR metric35 RR 0.7567 0.7486

Fig. 6 Scatter plot of objective RSS scores versus DMOS with the
best-fitting logistic function.
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be sent to the end user, which ranges between 400 and
600 bps.
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